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ABSTRACT

Transit and Light Curve Modeller (TLCM), a computer code with the purpose of analysing
photometric time series of transits simultaneously with the out-of-transit light variations and
radial velocity curves of transiting/eclipsing binary systems, is presented here. Joint light-curve
and radial velocity fits are possible with it. The code is based on the combination of a genetic
algorithm and simulated annealing. Binning, beaming, reflection, and ellipsoidal effects are
included. Both objects may have their own luminosities and therefore one can use TLCM
to analyse the eclipses of both exoplanet and well-detached binary systems. A simplified
Rossiter—-McLaughlin effect is included in the radial velocity fit, and drifts and offsets of
different instruments can also be fitted. The impact of poorly known limb darkening on the
Rossiter—McLaughlin effect is shortly studied. TLCM is able to manage red-noise effects via
wavelet analysis. It is also possible to add parabolic or user-defined baselines and features to
the code. I also predict that light variations due to beaming in some systems exhibiting radial
velocity drift should be observed by, e.g. PLATO. The fit of the beaming effect is improved by
invoking a physical description of the ellipsoidal effects, which has an impact on the modelling
of the relativistic beaming; I also point out the difficulties that are stemming from the fact that
beaming and first-order reflection effects have the same form of time dependence. Recipe is
given, which describes how to analyse grazing transit events. The code is freely available.

Key words: techniques: radial velocities —stars: brown dwarfs—planets: exoplanets—

photometry: transiting exoplanets —stars: eclipsing.

1 INTRODUCTION

A transit of an exoplanet was observed in 1999 for the first time!
(planet of V376 Peg = HD 209458; Charbonneau et al. 2000; Henry
et al. 2000). The first exoplanet discovered by the transit method
was found in 2002 (V5157 Sgr = OGLE-TR-56; Konacki et al.
2003). Since then we could see an enormous increase in exoplanet
detections: As of 2020 January, the up-to-date online catalogue
of Schneider et al. (2011) contains 4173 planets and planetary
candidates in 3096 planetary systems, exhibiting 678 multiple
planetary systems, and, in addition, 2735 planetary candidates and
unconfirmed objects in 2508 planetary systems (182 are multiple).
Most of them are discovered by transit method or show transits
(2749 exoplanets and 2428 planetary candidates; Schneider et al.
2011). One can expect that many exoplanets will be found in the
future due to ongoing ground- [e.g. HATS (Bakos et al. 2009),
WASP (Pollacco et al. 2006), NGTS (West et al. 2016), and KELT
(Pepper et al. 2007)] and space-based [e.g. TESS (e.g. Sullivan et al.
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I The planet itself was detected by radial velocities earlier; see Charbonneau
et al. (2000).
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2015), PLATO (Rauer et al. 2014), and maybe CHEOPS (Broeg
et al. 2013)] missions.

Transiting exoplanets are similar to eclipsing binaries not only in
the nature and cause of their light variation but also in their impor-
tance: They provide the only way to determine the mass, radius, and
the average density of an exoplanet without ambiguity, which are
the most important parameters to establish the planetary nature and
to study their internal structure, formation, and evolution.> They
also can be used for transit timing variation (TTV) studies, which
means variation in the period that leads to deviations in the mid-time
of the transit from a linear ephemeris, the transit depth variation,
and transit duration variation. All of these variations are caused
by changes in the orbital elements, which can have a gravitational

2Strictly speaking, this is true for double-lined spectroscopic and eclips-
ing/transiting binary systems only. Transiting planetary systems are one-
lined spectroscopic binaries, but the mass of the host star can be measured
via different techniques, like isochrone fitting, asteroseismology, etc. RV
measurements themselves provide only the m - sini product, where the
inclination i is not known in the absence of transits. Note that TTV masses
seem to be systematically affected by unknown factors, maybe because of
the mutual inclinations or unseen objects (e.g. Weiss & Marcy 2014; Bruno
et al. 2015) or poorly known stellar masses.

Published by Oxford University Press on behalf of the Royal Astronomical Society



2 Sz Csizmadia

origin (e.g. periastron precession (cf. Csizmadia, Hellard & Smith
2019), gravitational interaction by a third body (moon, planet(s),
brown dwarf, or other star in the system (e.g. Borkovits et al. 2011),
magnetic interaction between the star and the planet, mass-loss from
the system via stellar wind or by the evaporation of the planet, etc.).
The solution of the inverse TTV problem can be used to measure the
masses of the exoplanets if there are at least two transiting objects in
the same system, or it is suitable for detecting new, unseen objects
in the system (Holman & Murray 2005; Borkovits et al. 2011). The
mid-transit time is usually determined by fitting a transit model to
the individual transits (e.g. Csizmadia et al. 2010; Mallonn et al.
2015; Raetz et al. 2015, among others).

Transiting exoplanets can also be used to measure their own
atmospheric characteristics and composition via monitoring the ef-
fective radius variation of the planet over wavelength (e.g. Sedaghati
et al. 2016; Deming & Seager 2017, and references therein). If the
occultation of the planet is observed, then its surface temperature,
eccentricity, and argument of periastron can be estimated with a
high accuracy (e.g. Huber, Czesla & Schmitt 2017, among other
examples). Areas with different albedos and surface temperatures
resemble stellar spots on the star’s surface because they affect the
light curve (LC) similarly, and hence can be detected by applying the
usual stellar spot-modelling techniques to the surface (atmosphere)
of the exoplanet (e.g. Winn 2010). Transiting exoplanets also
give information about their formation and evolution processes
via measurements of the Rossiter—McLaughlin effect (RM effect)
during transits (e.g. Albrecht 2012).

All of these studies require the analysis of the information content
via fitting a model to the transit LCs. Appropriate models were
recently developed (Mandel & Agol 2002), or were imported from
the previous binary star tools simplified appropriately (e.g. Gimenez
2006a; Soutworth 2013). However, as Wilson (1994) pointed out
a model is not a code. The user-friendly, convenient, reliable,
and extensive applications of these models to real LCs — the LC
fitting itself — require a code, a choice and implementation of the
optimization method, error estimation, visualization of the results,
and detailed tests of the code. I mean two kinds of tests: the first
one is for discovering and repairing bugs and programing errors
(i.e. validation of the code), and the second kind is to establish
the numerical features and properties of the fitting procedures.
However, a final judgement of the reliability of the results is based
solely on the user astronomer, since the role of experience is not
taken by any kind of artificial intelligence yet.

In this paper I present the IDL-based code TLCM in detail, which
is widely used for transit fits. The abbreviation TLCM stands for
Transit and Light Curve Modeller. It runs under IDL? or freely
available GDL* and its aim is to carry out the fit of the transit +
occultation + out-of-transit variation + radial velocity (RV) model
to the observed LC, to find the best agreement between model
and observations, and to estimate the uncertainties of the fitted
parameters. A module callable from Python will be available too.

Although TLCM has been used in several CoRoT publications
(e.g. for CoRoT-6b, 8b, 9b, 13b, 15b, 17b, 21b, 23b) and many times
it was used to (cross-)check the results obtained by other codes (e.g.
CoRoT-5b, 7b, 11b, 18b, 19b, 20b), a complete description has
never been published. TLCM has a long list of further applications,
including Kepler-90’s seven transiting planet systems (Cabrera et al.
2014) and other K2-objects (Eigmiiller et al. 2016, 2017; Smith

3Interactive data language.
4Gnu data language.
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et al. 2017, 2019, Korth et al. 2019) among other space-based and
ground-based photometric results (Rauer et al. 2009, 2010; Bordé
et al. 2010; Cabrera et al. 2010, 2015; Csizmadia et al. 2010, 2011,
2013, 2015; Deeg et al. 2010; Fridlund et al. 2010; Gandolfi et al.
2010, 2013; Bouchy et al. 2011; Hébrard et al. 2011; Guenther
et al. 2012; Ollivier et al. 2012; Paetzold et al. 2012; Rouan et al.
2012; Klagyivik et al. 2016). The agreement between TLCM and
JKTEBOP was found to be excellent in Soutworth (2012) for the
checked cases.

The interested reader can find more descriptions of codes of others
in Deeg (2018) and in the references therein, used in the field of
exoplanets. As a comparison of others, one can say that TLCM
does not model multiplanet systems simultaneously contrary to
EXOFASTV2 (Eastman, J. D. et al. 2019, subm. to PASP), although
it was used to model the transits of the seven planets in Kepler-90,
modelling each planet’s transits separately (Cabrera et al. 2014).
TLCM takes the red-noise effects into account while exonailer does
not.

Deeg (2018) listed 47 codes in total, which are designed to analyse
exoplanets. 23 out of 47 (49 per cent) are designed for modelling
transmission spectra, stellar spectra, planetary atmospheres, orbital
dynamics, stellar spot analysis, out-of-transit variations, validation
by checking possible blend scenarios, predicting limb-darkening
coefficients, or doing data visualization. Four eclipsing binary codes
are mentioned: ellc and JKTEBOP are able to fit LCs of eclipsing
binaries, while PHOEBE 2.0 and Binary Maker 3 are able to fit
jointly RV and LC. I would extend this list with the important
Wilson—-Devinney code (Wilson & Devinney 1971,Wilson 1979,
1990, 2008), which is also a joint RV+LC fitter. JKTEBOP is
extensively used for transiting exoplanet LC fits by John Southworth
(Soutworth 2014); the others are rarely applied to exoplanets. Deeg
(2018) lists nine further codes that perform only LC fits — three
of the nine are for analysing multitransit system LCs or exoring
transits. Seven further codes are for only RV analysis. He mentions
only three codes that are able to fit jointly the RV and LC of a
transiting host star: EXOFAST, exonailer, and TLCM. I extend this
list with pyaneti (Barragdn, Gandolfi & Antoniciello 2019). TLCM
is able to fit:

(i) either the LC only,

(i) or the LC and RV of the primary simultaneously,

(iii) or the LC of the system and the RVs of both components
simultaneously

(iv) or the LC + 1 or 2 RVs and the out-of-transit variations with
red noise management.

The ability to fit two RV curves can be important to extend
the range of applicability to well-detached SB2 systems of stars,
because then the spectral lines and RV curves of both components
might be measured. There exists other codes used but a detailed
description was not published so far and therefore they are not
listed in Deeg (2018).

TLCM is able to fit simultaneously the following phenomena for
one transiting planet:

(i) transit

(i) occultation and the nightside emission of the secondary

(iii) the out-of-transit light variability: sum of ellipsoidal, reflec-
tion, and beaming effects

(iv) Rgmer delay

(v) binning effect in the LC

(vi) RV of one or both components

(vii) RM effect of both components



(viii) baseline variations up to second order.

Fitting the above is complemented with a wavelet-based red noise
model in the LC part and with the determination of the absolute
parameters of the system (if the primary’s temperature is known)
and allowing the possibility for the user to add self-defined functions
that cause baseline variations beyond second order.

2 THE MODEL

2.1 Inputs and notations

Before describing the model in detail, the prerequisites should be
discussed.

The input photometric data should be either in the format of [time
indays, normalized intensity, uncertainty, exposure time in seconds]
or [photometric phase, normalized intensity, uncertainty, exposure
time in seconds]. In the latter case period = 1.0 should be set and
in this case the calculated stellar density is not a valid result — the
code sends a warning message for such a case. The RV data should
be in the format [time, RV, uncertainty of RV, instrument identifier
number], and one has to fill one file for the primary and, if the
secondary’s RV curve is available, another file for the secondary. If
the RV curve is to be fitted too, then the photometric data file must
contain time and not phase. The time should be in heliocentric or
barycentric Julian Date and the same type of time-scale should be
used for the photometric and RV curves.

Throughout this paper, I call the primary object the host star
and the secondary object the planet. However, the code is able to
fit well-detached (a/R; > 10 — for spherical star—planet systems
no such limit exists) eclipsing binary LCs too. In those cases, the
primary and secondary objects are stars and the star behind the other
at photometric phase zero is called the primary.

The forward problem (i.e. calculating the LC for a given set of
parameters) needs a set of parameters, which are the inputs of the
code. This parameter set is summarized in Table 1.

The conjunction parameter in Table 1 is defined as

b = a(l —e?)cosi

T R(l +esinw)’ M

For the fit and for the forward problem, I use b  instead of i
inclination. i = 0° corresponds to a pole-on orbit, and i = 90°
to an edge-on orbit. The definition is that the inclination is the
angle between the line of sight and the orbital angular momentum
vector. The reason for using b’ instead of i is that b can be better
constrained in the fit because if a transit is observed one knows a
priori that 0 < b < 1 + k should hold and there is no sense to search
outside this region; the use of inclination means more complex
constraints.

Notice that in circular orbits b = b = 8y, the conjunction
parameter is equal to the impact parameter b and the minimum sky-
projected distance 8y, but in eccentric orbits this is not the case;
see equations (4) and (14).

I also make the note that b’ is not restricted to have only positive
values — except if the user use such a restriction when one sets
such a box prior in the input config file. When such a prior is not
used by the user, then positive and negative conjunction and impact
parameters are allowed, meaning that inclination values below and
over 90 degrees are also allowed. However, for central transits
such a missing constrain may yield a bias in the impact parameter
and thus in the inclination estimation because the median of the
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conjunction/impact parameter may artificially be shifted closer to
Zer0.

The following combinations of the linear and quadratic limb-
darkening coefficients are used in TLCM:

Uy i = Ulinear,i T Uquadratic.i s
U— ;i = Ulinear,i — Uquadratic,i (2)

where i can be either the star (s) or the planet (p). It was found by nu-
merical experiments in Brown et al. (2001) and later was confirmed
by analytical calculations by Pdl (2008) that these combinations
of limb-darkening coefficients provide better performance because
they are less sensitive to degeneracies and intercorrelations between
the parameters. Note that I am not aware of a similar study about
such useful combinations for other limb-darkening laws; therefore,
such a study could be timely.

2.2 The sky-projected mutual distance

TLCM consists of a model and an optimizer. The heart of the model
is the subroutines of Mandel & Agol (2002), which provides the
theoretically expected flux of a spherical, unspotted star transited
by a spherical, absolutely dark (flux /pjue; = 0) planet. (The present
version of the code uses the faster, newer version of the model,
presented by Eastman et al. 2013.) That routine allows the user
the choice between linear and quadratic limb-darkening laws. The
output is a flux value, with a normalization constraint that the flux
should be 1.0 at phase 0.25 (cf. Section 2.10). This can be compared
to the observed flux value during the optimization process. The
inputs of the Mandel & Agol (2002) routines should be: the ratio
of the radii of the planet and the star, k = R,/R, (of course, k
> 0.0 holds). The planet can also be bigger than the star, e.g.
the case of a white dwarf and a larger super-Earth — or k > 1
in the case of occultation. If any iterational step sets negative k,
TLCM calculates the transit function with its absolute value but
it adds the resultant transit to the LC with an opposite sign, i.e.
causing a ‘positive hump’ to attempt to avoid the Lucy—Sweeney
bias in the radius ratio in small transits at low signal-to-noise (S/N)
ratios, the scaled semimajor axis, a/Rs (a/Rs > 1 + k holds — when
this condition is violated, TLCM takes a/Rs = 1 + k in circular
orbits or a/Rs = (1+k)/(1-¢) in elliptic orbits, the limb-darkening
coefficients,’ and the mutual sky-projected distance between the
apparent stellar centre and the apparent planetary centre, denoted
by §.

The sky-projected distance between the centres of the compo-
nents, as is well known, is given by the following equations (e.g.
Russell 1912; Milone & Kallrath 2009, equation 3.1.10, Gimenez
2006b, equation 19):

2
np = 7
E—eSiI]E=M=np(t—f)=np(f—T())+M0
1 E
tanE = +etan— 3)
2 1—e 2

(for M) see equation 12) and

_ /Ry - —62)\/1

1+ ecosv

8§ — sin? i sin?(v + w), 4)

where np, E, and v are the mean motion, and the eccentric and true
anomalies, respectively. For the calculation of periastron passage

SThese are calculated easily from the 1, and u_ combinations.

MNRAS 00, 1 (2020)
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Table 1. Description of parameters used in TLCM. LDC stands for limb-darkening coefficient.

Notation Name Notes

Ty Transit epoch. The epoch is the mid-transit time of any
un/observed transit.

P: Period. In days or = 1 in case of phase units (see the main text).

alR; a: semimajor axis, R; is the stellar radius. The code expects and fits their ratio,
which is called the scaled semimajor axis.

k=Ri1/Ry Planet-to-star radius ratio. R is the planetary radius. The code expects and fits k.

Jesinw e: eccentricity, @: argument of periastron. The code expects and fits these combinations.”

Jecosw

b Conjunction parameter. See the main text for further discussion.

Uy g U_ s Combinations of LDCs for the star. -

Ui psU_p Combinations of LDCs for the planet. See equation (2) and paragraph after that
for more information about it.

I Third light. See Section 2.10 and equation (51) for more information about it.

Q Longitude of the node in degrees. It has no impact on the light-curve fit;
it rotates only the sky view
of the system (see Fig. 1).

A1, Ay Albedos of the star and the planet. -

0w, Oy White noise and the red noise factors. -

Po, P1, P2 Constant, linear, and quadratic terms of -

a fitted parabolic flux change. -

Iparabola Centre time of the parabola. It is measured in phase units.

h Height correction-parameter. See Section 2.9 for more details.

Nt Time-resolution factor. It is for taking into account the smoothing of extremely long exposures
(like in the ~29 min exposure time of Kepler’s long-cadence data.
Section 2.11).

v, RV of the system’s common centre of In kms~!. It is positive when the

mass to us. system’s distance is increasing from us.

Ky RV half-amplitude of the primary. Inkms™'.

IVoffset RV offset between different spectrographs. It is given in km s7L,

dy, dy Linear and quadratic terms for RV drifts. Their units are km s~ !/day and km s~!/day?.

q = My/M; The mass ratio of the two objects. M; stands for the components’ mass. Only used for double-lined
spectroscopic systems (SB2) where the spectral lines of both
components can be seen or for systems where the beaming or the
ellipsoidal effect is strong enough that beaming-+ellipsoidal effects can
be simultaneously fitted. For SB1 (one-line systems) or systems without
RV data, it is not used, except in case of ellipsoidal effect is needed.

Tert Effective temperature of the star. It is kept fixed during the fitting procedure.

f Surface brightness ratio of the components. Passband dependent.

V4 Metallicity of the star. Fixed during fitting procedure.

A The effective wavelength of the observations. In nanometres.

Vsinly o Projected equatorial rotational speed. Inkms~!.

Al2 The projected angle between the stellar In degrees.

rotational axis and the orbital planes.

Ninit Number of individuals in a population. See Section 4.1.

Tsa Control parameter of the Simulated Annealing (SA). See Section 4.2.

Nmax The maximum number of iterations. See Section 4.2.

in SA and in MCMC.

Note. “Version 95 and later ones fit /e sin @ and /e cos w. Version 94 and earlier ones fitted esin w and ecos w. See Eastman at al. (2013) and Albrecht (2012)

about the complications that different parametrizations can introduce.

time 7, see Section 2.3. Note that transit community uses the
notation § or sometimes §7 for the approximate transit depth as
S = (Rplanel/Rsm)z, but here it is used for the mutual sky-projected
distance.
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The transformation of the true space orbit into projected orbit is
done via (expressed in stellar radius units, cf. Milone & Kallrath
2009, equation 3.1.8):

@/R)-(1-&)

1+e-cosv

X =r-sin(v+ w) - sini
Y = r(cos(v 4+ w) sin 2 + sin(v 4+ w) cos i cos §2)
Z = r(cos(v + w)cos Q2 — sin(v + w) cos i sin )

The sky-projected view of the system is given by Y and Z and it
is visualized in Fig. 1. In other words, the mutual distance is § =
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Figure 1. Illustration of the meaning of orbital element €2, the longitude of
the node. Positive Z-direction is north on the tangential plane of the sky at
the place of the star, and positive Y-direction is in the direction of east. The
example shows an eccentric orbit with different impact parameters during
occultation and transit.

A/Y% + Z2 and by substitution one can see that this is independent
of Q. The axis X is oriented towards the observer. The origin of this
XYZ coordinate system is in the centre of the host star.

The minimum value of & during transit is called the impact
parameter, which for circular orbits is

b=a/Rcosi

while for eccentric orbits

b i sin?(vy + ).

2
_ @R (=) e
1+ ecosvy
The exact value of v is calculated in the next subsection. Using
the approximation vy ~ 90° — w and substituting this into equa-
tion (4), one gets the conjunction parameter (equation 1). v is
the true anomaly when § has its minimum value during transit —
corresponding to the deepest transit depth — and its exact value is
calculated in the subsequent subsection. Notice that for occultations
vg ~ 270° — w, so b can be different for transits and occultations
in non-circular orbits.

The values of — or at least constraints on — e and w can be obtained
from the observations from the secondary eclipse (or occultations),
RV measurements, or phase curves. When this is not the case, I use
equation (6) to calculate the sky-projected distance.

Occultations (secondary transits) in CoRoT LCs can be only
tentatively detectable (Parviainen, Deeg & Belmonte 2013) and
also rarely observable in Kepler LCs (Coughlin & Lopez-Morales
2012). Remarkable exceptions are CoRoT-1b whose occultations
can be observed both by a satellite (Snellen, de Mooij & Albrecht
2009; Parviainen et al. 2013) and from the ground (Alonso et al.
2009) and CoRoT-2b (Alonso et al. 2010 from the ground in NIR and
Parviainen et al. 2013 by CoRoT) as well as CoRoT-6b, 11b, and the
brown dwarf CoRoT-15b (Parviainen et al. 2013). For well-studied
secondary eclipse detections in the Kepler data, see Angerhausen,
DeLarme & Morse (2015).

RV measurements also do not always constrain the orbit with
the desired precision (because many of the targets are in the fainter
regime or the number of observed RV data points is insufficient;
see e.g. Zakamska, Pan & Ford 2011). For example, Hébrard et al.
(2011) reported e = 0.33 £ 0.1 for CoRoT-16b and Gandolfi et al.
(2010) reported e < 0.6 for CoRoT-11b. In the case of CoRot-16b,
this eccentricity error causes approximately 19 per cent relative error
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Figure 2. Estimation of sky-projected mutual distance (§) of the centres of
the primary and secondary objects under the assumption that during transit
duration D the tangential velocity V of the secondary relative to the primary
is constant. R;s are the radii of the two spherical objects; b is the impact
parameter. The position of the planet on the line connecting the first contact
and mid-transit point is found by linear interpolation. This yields one side
of a right-angled triangle, and its another side is the constant b - R;. The
hypotenuse is the searched & distance that can be obtained by applying
Pythagoras’ theorem.

in the determination of the a/R; ratio. GJ 1214b has only an upper
limit for eccentricity too (e < 0.27; Charbonneau et al. 2009) and
the list of poorly measured eccentricities could be continued (cf.
with the list of 231 eccentricities of Bonomo et al. 2017). Note
that the transit length itself does not constrain a/R; because transit
length also depends on the radius ratio k, impact parameter b, e,
and o themselves (see equation 70). The well-known correlation
between a/R; and b (see e.g. Csizmadia et al. 2011) will then be
further affected by the uncertainties of e. In addition, when the S/N
ratio is very small, then it is not possible to determine a/R; even
for circular orbits from the LC itself with the desired accuracy;
one needs an additional constraint like stellar density to get an idea
about a/R, (Barros et al. 2014). This constraint is based on the
known relationship derivable from Kepler’s third law:

37 a\’
P =GP0 + My My (R_1> ' N

In many applications, M,/My ~ 0, when this is not true (stellar or
brown dwarf companion, for instance), the mass ratio should be
estimated, e.g. from the available RV curves of the primary and the
secondary or from the ellipsoidal effect. When the stellar density is
not available,’ then I need some other procedure.

For those cases where e/w values are not available, another
kind of calculation was introduced for the sky-projected distance
(Csizmadia & Pasternacki 2013), which is based on a linear
interpolation between the mid-transit and the first contact as (Fig. 2;
see also Csizmadia & Pasternacki 2013):

_ 2 B 5 o(t)) :
8(t;) = /b + ((1 +k)> — b?) Bon) (©6)

5The main problem is the density of single stars — densities of SB2 eclipsing
systems can be obtained in a model-independent way with a high accuracy.
Mean stellar density can be learned from asteroseismology, but most of the
stars are too faint, or the time sampling too sparse or observational window
is too short to utilize it. However, it is a good prospective for PLATO (Rauer
et al. 2014). Spectroscopically measured log g and T of the star can locate
the place of the star in HRD yielding its mean density, but this method is
severely affected by uncertainties of the measured log g values, input stellar
physics, convection theory, and degeneracies in the isochrones.

MNRAS 00, 1 (2020)



6 Sz Csizmadia

where ¢ is the photometric phase:

lj—TQ

¢i="7p @)

where #; is the mid-time of the jth observation and Agi4 = (t —
To)/ ATy, ATy being the full duration of the transit. Its advantage
is that it contains only photometrically measurable or fittable
parameters and it requires no spectroscopic or other data input.
Our tests showed that this formulation works quite well even for
close-in planets too. If the scaled semimajor axis is smaller than 3,
or one needs to model the out-of-transit variations, then one has to
use the precise equation (4) instead of (6).

After setting the sky-projected mutual distance for every time
when one has a measurement, the code calls the subroutines of
Mandel & Agol (2002), and calculates the flux (F) of the star for
these time-moments ¢; (i is the index for the measurements):

Tr(t;)=MAk,uss,u_y. 8(a/Ry, e, w,i, P, 1)) 8)
Oc(ty) = MA(K™", Uyp p,_p.8(a/Ry e, 0,i, P, 1)) (&)
or

Trt;)=MAk,us s, u_s,....80b,k, Ty, ATs)) (10)
Oc(t;) = MAKk™  uy pou_p, ..., 8(b, k, Ty, AT1a)). (11)

Here, MA denotes the Mandel-Agol equations and subroutines,
whose outputs are the theoretically expected flux values. 7r stands
for the transit and denotes the fractional light loss of the pri-
mary, and Oc does the same for the secondary during occultation
event.

2.3 Further note on the calculation of sky-projected distance

In case of eccentric, inclined orbits, the commonly reported mid-
times of transits and occultations can differ from the conjunction
times by as much as some minutes. This is much more than
the ~20 s timing error in mid-transit time observations (e.g.
Csizmadia et al. 2010). Readers can see Appendix C to get the
definition of conjunction and the period variations caused by proper
motion, which moves the conjunction point. This makes the correct
interpretation of LCs and transit timings difficult. It is explained
below why this difference occurs and how one can take it into
account.

Fig. 3 illustrates the geometry of the impact and the conjunction
parameters. When the orbit is circular, e = 0 and w = 90° are set,
then the impact and conjunction parameters are identical to each
other. In case of an eccentric orbit, the periastron passage time t,
the photometric epoch 7)), and the true anomaly at the middle of
the transit vy can be linked to each other via the following set of
equations:

Th—1 Ey—esinEy, M,

P 2 T om

E, 1—e ()
tan — = tan —. 12
an2 e an2 (12)

The true anomaly at the moment of the epoch can be decomposed
as

vo = 90° — @ + 6. (13)

vy, Ey, and M|, are the true, eccentric, and mean anomalies when &
reaches its minimum at transit (for occultation, one has to add 180°
to the r.h.s. of equation 13).
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Figure 3. Upper figure: illustration of the star, the planetary orbit, and the
place of the observatory. In principle, the line connecting the stellar centre
and the observatory is not changing (or any change due to RV, proper motion
or observatory’s motion in Solar system can be corrected out in known
ways). When transit (or occultation) occurs the planet crosses this fixed
line and we time the planet’s position always at the same place. Note that
orbital elements, hence the orbit’s shape and orientation (e.g. Csizmadia
et al. 2019), can change. Lower panel: Meaning of impact parameter b
(red line) as the smallest sky-projected distance of the centres of the host
star and the planet, which, in eccentric orbits, does not necessarily lie on
the central meridian. However, the conjunction parameter b (blue line) is
always on that. Notice that the orbit can rotate due to general relativistic
and tidal effects and therefore the red line is continuously changing its
position.



In some other systems, we can also expect significant deviations
between conjunction and mid-transit times: e.g. the referee of this
paper pointed out that he found 175 s difference for HATS-41.

Actually, this may affect the transit timing analysis of eccentric
systems and it can be an additional reason why the TTV masses seem
to differ systematically from RV masses, but a detailed exploration
of the topic is beyond the scope of this paper.

The appearance of the angle 6 is the consequence of an inclined,
eccentric orbit and usually it has a value of just a few arcminutes.
A recipe of how to calculate it is given by the eclipsing binary
star community (Martynov 1973; Gimenez & Garcia-Pelayo 1983).
According to them, the first and second derivatives of equation (4)
and the substitution of equation (13) yield

ecoswcos’ i

tanf = F (14)

cosfsin?i +esinw’
The upper signs are valid for transit and the lower signs are for
occultation. This is solved iteratively starting from # = 0. (The
correction is apparently built-in into the subroutines of Gimenez
20064, but not into Mandel & Agol 2002 because it expects directly
the sky-projected distance). Conjunction occurs when the planet
crosses the North—South meridian (Y = 0) and usually this moment
does not coincide with the moment when the centres of the two
objects are projected closest on the sky to each other (the eclipse is
the deepest).

Usually, the transit epoch is known with much higher accuracy
than the RV-based periastron passage time; therefore, I apply this
correction in the following way, which also means a reduction in
the number of free parameters: When the RV curve is fitted too,
then one may adjust 7 and set
M() x P

T = T() - o . (15)

This procedure is done before TLCM starts to calculate the sky-
projected distance via equation (4).

The code is able to fit in the time domain or in the phase domain.
The photometric phase is simply linked to the mean anomaly via

M:Z?T(,D'FM(), (16)

where My = Ey — esin E; is the mean anomaly at the epoch (recall,
I count the photometric phase from the moment of mid-transit).

2.4 RV curves

It is desirable to be able to fit the LC only (this can be important for
planetary candidate ranking to save telescope time before one starts
the RV measurements), and also to be able to fit jointly the RV and
photometry, which is valuable because there are more constraints
and fewer degrees of freedom. The present RV model also includes
the RM effect. Our RV treatment for the primary is

Viaa1(tj. 1) = V), + Ky(e cos w + cos(v; + w))

+ S orisa(ty, 1) + di(t; — T) + da(t; — T)*

+ (Vsini) YA )(1 —=Tr) a7
and for the secondary

K
Vrad,2(fj~l) - Vy -

(ecosw + cos(v; + w))

+ I P otmse(tj, 1) + di(t; — T) + do(t; — 1)

—(Vsini)Y () (1 — Oc¢) (18)
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and the minus sign in the second term of equation (18) comes
from the fact that the periastron of the secondary object is at w
+ 180°. The angle A; can be different for the two components
and it means ‘the angle between the position of the stellar ro-
tational axes projected on the plane of the sky with that of the
pole of the orbit’ (Gimenez 2006b; he denoted it by f£;). In my
treatment, angle 2 should be replaced by A; in the expression of
Y (Section 2.2). While the first three lines in equations (17) and
(18) are standard expressions, the last term, describing the RM
effect, is a simplified expression for it. In TLCM, a small-planet
approximation is used for simplicity to take the RM effect into
account. The 7r and Oc functions are the transit and occultation
functions introduced by equations (8) and (9), and I allow that for
the RM effect these functions may have their own limb-darkening
coefficients. This is because the spectroscopic observations may be
carried out in a different wavelength region to the photometric
measurements; therefore, RM effect and photometry may have
different limb darkenings. Notice that limb darkening is changing
over wavelength. Typically, Rossiter—-McLaughlin measurements
are done using a wide wavelength range of spectra in order to
increase of the lines used, which is absolutely necessary to reach
the desired accuracy. Therefore, here we would need an integral
or an appropriately weighted limb-darkening coefficient. I found
with numerical experiments (Fig. 4) that if the Sloan g’-band limb-
darkening coefficients are used instead of the z’' band, then the
maximal difference between the two RV curves during transit is
about 16 per cent for a typical hot Jupiter scenario (for stars it can be
higher). This kind of measurements can cover such a big wavelength
range. Therefore, the code asks for an appropriately weighted limb-
darkening set for the fit of the RM effect or alternatively fits it.

To check the range of applicability of the RM effect treatment,
I compared this model to numerically calculated RV curves. For
the numerical model, the star was divided to 5 million surface
elements and I performed several simulations with different input
parameters: radius ratio, limb darkening, inclination, Vsin/, and A
angle. I found that it one allows the limb-darkening coefficients to
vary in the RM fit, then TLCM can recover the RM parameter A
within =15 deg (Fig. 5) — probably the free limb darkening is able
to compensate some of the effects neglected in the small-planet
approximation.

Mottsel (2, 1) is a zero-point shift to take into account that some-
times one has RV measurements from different instruments, where
[ is the index of the instrument used for the RV measurement at
t;. The drift, characterized by d; and d», can be due to unknown
companions as, for instance, it was applied to interpret the RV
curve of K2-99b by Smith et al. (2017).

When one fits the RV and LC together without red noise, the >
values of them are simply summed up. No scaling factor is applied
to increase the importance of one curve over the other.

2.5 Emission of the secondary

As is known, Jupiter and Saturn in our own Solar system emit more
energy than they receive from the Sun; this is due to their slow
contraction under self-gravity, which produces heat. Although this
radiation is more prominent in infrared, however, being a blackbody
radiation, it is present at all wavelengths. Notice that observations
of several exoplanet occultations (see the references in Section 2.2)
show that many hot Jupiters exhibit a flux of ~10~* part of the star,
that is 100 ppm, while PLATO will have 34 ppm/h'”? photometric
precision (Rauer et al. 2014), and Kepler and in some cases CoRoT
have already reached this or even better precision for bright host
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Figure 5. Study of the accuracy of the small-planet approximation in the
RM effect, radius ratio (R,/Rs) versus accuracy of AA. Aj is the difference
in degrees between the synthetic input value and the resultant value of the
model carried out with the small-planet approximation. The two horizontal
lines denote the +15° limits and they can be taken as limits of the accuracy of
this approximation. For this test, a uniform, 2 ms~! scatter in the RV curves
was assumed as observational errors and every point had a different a/Rar,
VsinI (between 3 and 28 kms™"), A, radius ratio, and limb darkening. At
the present level of precision, this accuracy seems to be enough — however,
a full analytic RM model will be implemented in future versions.

stars. In addition, if the secondary is a brown dwarf or a star, then
a considerable amount of isotropic emission can be expected from
the object. Therefore, the secondary emits flux in this model. It is
denoted by n and it is

= (ﬁy f 19)
n = RS I

where f is the surface brightness ratio of the two objects at the
effective wavelength of the observations; bolometrically, it would
be

. n\*
Jrol = (E) 20)

but in case of blackbody approximation:

P43 UKT _ |

rasshand = g 1 @n

Here, A is the effective wavelength of the filter or response
function (in microns) used in the observations, and 7; stands for
the temperatures of the components (in Kelvins). The constant
14 388 is the hc/k, being the Planck constant, speed of light, and the
Boltzmann constant expressed in micron - Kelvin. For real spectra,
the ratio f can be quite different from the blackbody approximation.

TLCM calculates f from the primary’s temperature and from
the value of f. In case of space-based CoRoT, Kepler and TESS
data the code requires to specify the name of the satellite and
via equations (35) and (36) it calculates a more precise effective
temperature value of the secondary from T, ; and from the fitted
or prescribed f, using theoretical stellar spectra (see Section 2.6.2).

Thus, the code also calculates T, for the secondary object, but it
should be noted while f'is exact, 7, might be approximate.

2.6 Beaming effect

The beaming effect or Doppler boosting is a special relativistic
effect and means that the light of an isotropically emitting object
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(in the rest frame) will focus its light in the direction of motion
(in the observer’s frame). The effect is described and characterized
in Loeb & Gaudi (2003) and its first successful application was to
CoRoT-3b by Mazeh & Faigler (2010). Since then, the effect has
been observed in quite a few systems.

For the primary the beaming effect is taken as

Bi(tj) = —ap1 Va1 (K1, e, w, dy, da, v(t))/c (22)
and for the secondary, I take
By(t;) =n-ap2Vi2(Ki/q. e, o, dy, da, v(t)))/c. (23)

where ¢ = M,/M, is the mass ratio and functions Vy,q,1 and Viug 2
are given by similar expressions to equations (17) and (18). «;s are
the spectral indices. The flux variation caused by beaming consists
of two parts. The first part is a periodic effect with the orbital
period caused by orbital motion. The second part is due to the
systematic velocity and RV drift, which should cause observable,
but small changes in the mean flux level of the star since its distance
is changing. Using the drift value of K2-99b (Smith et al. 2017),
one expects 10 ppmyr~! brightening. Notice that such an effect
might be observable by PLATO, because one can average the LC
over a long time (up to several months) to detect such effects. Its
detection requires the control of long-term systematics: star-spots,
stellar variability, rotation, and instrumental drifts. If these can be
taken into account, then such an effect can be used to detect unseen
companions too.”

2.6.1 Spectral index: blackbody approximation

For computing the spectral index factor «, the inputs are the
temperature of the primary and the surface brightness ratio of the
two objects; therefore, the secondary’s temperature is estimated
with the assumption that both the objects are black bodies. One can
verify that in this case:

14 388 UK

I, = . (24)
An (1 + LMK/ 1))
According to Loeb & Gaudi (2003), the spectral indices are
14 388 K4 388 1K/ T
api = (25)

A 43 UK/L/T, 1)

and the wavelength should be substituted in microns (the code
expects it in nanometres and automatically converts it to microns).

2.6.2 Spectral index: approximation by real stellar atmospheres

However, when the blackbody approximation was applied to some
of the real systems observed by K2 it was found in Eigmiiller
et al. (2018) that this is not precise enough. Therefore, a passband-
integrated beaming coefficient for the photometry of CoRoT,
Kepler, and K2 is used as was done in Bloemen et al. (2011) too.
This is as follows:

J TS, T;, logg, [Fe/HDay, i (. T;)d2
JTr()S(, T, logg, [Fe/H])dA
where T(1) is the transmission or the sensitivity function of the used

instruments, and S is the template spectrum from Kurucz models as
is provided by Munari et al. (2005).

, (20)

Qpi,mod =

TThe brightness change due to change of the distance to the star caused by
the systematic velocity of the system is negligible, less than 0.1 ppmyr~!.



Since the modified beaming factors are functions of the stellar
log g and metallicity, it is time-consuming to re-calculate these
factors in iterational every step when the temperature is changing.
Therefore, I plotted these modified «;, factors against temperature,
averaged for all metallicity and log g and the following approximate
formulae are used instead of equation (26) with

x; = T,/5775K. Q27
Below T'= 20000 K for CoRoT:
e 48512x;
Apimod — 3 = 43.1405 — 30.4439"—1 + 37.3894xi2
eri —
—5.824404x] +2.301x; (28)
and for Kepler:
1 135289,
pimod — 35 = 31.938 — 24.4348'—1 + 15.5532x?
eri —
+2.340 49exp(x;) (29)
while for TESS:
x; e~ 3223 04
Qpimod — 3 = 2.47645 — 31.5295—1 —0.385 524xi2
eti —
+0.122321exp(x;). (30)
Over 20 000 K one can use for CoRoT:
x; 0868 462x;
Qpimod — 3 = —1.52933 —0.792 617{—1 +0.000 733 04x?
et —
—0.0110599x? (31)
and for Kepler
x; 08683335
Apimod — 3 = —1.97886 — 0.647 688A—1. (32)
e 1 —

For TESS, I needed two more temperature ranges for appropriate
fits. Between 20 000 and 34 000 K:

Xi e().858 22x;

pimod — 5 =—191355-10.735 441ﬁ (33)

while over 34 000 K:
Upimod — S = —5.21913 4 0.391 325x; — 0.025 4576x,2. (34)

However, it was found to be more accurate than this approximations
if L interpolate a table of what I calculated for a grid of temperatures,
log g. and metallicity with a grid of 250 K in temperature, 0.5 in log
g, and 0.5 in metallicity. Using this approach, the computational
speed is considerably faster than the integral of equation (26)
performed in every iteration step and the code still produces good
results (Eigmiiller et al. 2018).

Equations (28)—(34) and Fig. 6 also show that cooler stars have
larger spectral indices, i.e. they produce bigger beaming effects at
the same RV. Thus, cooler stars may exhibit more evident beaming
curves.

Similarly, the calculation of 7, from 7, and the intensity ratio f
from the wavelength, is also based on the same spectral library of
Munari et al. (2005) and it is given by the following algorithm. The
intensity of the primary is

I = a+ bx; + cx? +dx} + fx} + ge® (35)
and then

logTur2 = g1 + hlog f 11 + ilog” f I + jlog® f I + klog* f I, (36)
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Figure 6. Dependence of spectral index on effective temperature for the
Kepler passband. The scatter in some temperature ranges is due to different
metallicities and log gs of the template stars.

Appropriate coefficients for the three main exoplanet satellites are
in Table 2.

When only the LC is fitted, the beaming — when observable —
is a useful parameter to estimate the RV amplitude. When RV and
LC are simultaneously fitted, the code uses the RV amplitude to
calculate the beaming.

2.7 Ellipsoidal variability

When a planetary-sized or bigger celestial object rotates and/or it
is subject to tidal interaction, its equilibrium shape is not spherical
anymore. When the rotation and the tidal deformations are relatively
small, it is enough to characterize this variation by the light changes
due to a two- or three-axial ellipsoid. Since I assume that the
flattening of this ellipsoid is small, the transit/eclipse phenomena
can still be calculated via a spherical model. TLCM ignores this
discrepancy, which should be small as long as the ellipsoidal
variation is small.

The flux variation caused by ellipsoidal effects is denoted by E;.
For the primary object, I use the equation of

Ei(t) = _,ai; Pj(cosuy sini)(a/r)** x [1.n] (37)
while
ur = v(ty) + o —90.0". (38)

The vector [1, n] describes the luminosity of the components: 1
should be used for the primary and »n for the secondary. The terms
a;j, according to Kopal’s (1959) calculations, are related to the mass
ratio, the semimajor axis, the radius of the objects, limb and gravity
darkening, and internal density distributions. This latter factor is not
well known for exoplanets so far; for stars we have some estimations
(the log k, parameter; for a review, see Torres, Andersen & Giménez
2010). Usually, ays are expected to be small and they are polluting
the reflection effect and hence may be intercorrelated with it. ap
should be the dominating factor in the above expression. The
sini factor provides that pole-on orbits will show no ellipsoidal
variations (as one expects). The aj, factor can be used to estimate

MNRAS 00, 1 (2020)
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Table 2. Coefficients for equations (35) and (36). Metalicity and surface gravity dependence is not taken into account.

Satellite a b c f g Validity range
CoRoT —1.06041x107 7.69335x10°  1.09475x107 -1.73959x10°8 1.84133x107 —7.68347x10710 3500 < Teff < 47500K
Kepler -9.38987x10® 6.8287x10®°  9.51496x10°8 —1.52921x10°8 1.60095x10° —6.57164x10710 3500 < T < 47 500K
TESS -8.05476x10 1.00753x107  3.51735x10°8 -6.82392x107 8.47047x10710 —3.69021x1071 3500 < T, < 47 500K
81 h i J k
CoRoT -824477  -55.4495 —12.9088 -1.30535 -0.0487586 3500 < Teff < 47 500K
Kepler —100.957 -66.2159 -15.2311 -1.52606 -0.0565664 3500 < Teff < 47 500K
TESS —203.035 -124.523 —27.6019 -2.68399 -0.0969821 3500 < Topr < 47 500 K

the ellipsoidal mass ratio of the two objects:

5(1]2(6 — 2Ll] - 7142)
2015 + w1 +2u2) (140257 (55 — 1)) sin?i(1 + 2k)
(39)

Here, 7 is the correction for the gravity darkening (see Kopal et al.
1959) and k; is the so-called apsidal motion constant. To get its
value, I estimate the absolute stellar parameters (Section 3), and the
tables of Claret (2004) are used to estimate k,. Note that apsidal
motion constant of a star is of the order of 0...0.05 usually, so it has
a very small impact on the final results.

When TLCM fits the ellipsoidal effect and simultaneously the
RV curves of both objects and/or the beaming effect of both
components, then a different ¢ is used to estimate the mass ratio in
equation (18) to get the RV amplitude of the secondary. A penalty
function (the absolute value of the difference of g — ¢) is added to
the minimized x? or —logL to reach an agreement. Also, a penalty
value of |agry/Rs — a/R;| is also added in this case, a/R; is the fitted
scaled semimajor axis, related to the transit duration, while agy is
the true semimajor axis obtained via

iy = BPA+9)

25q sini
and Ry is the absolute stellar radius estimated from 7., metallicity,
and mean density of the star (Section 3). The advantage of this
constraint during beaming analysis is that it makes the analysis
self-consistent.

2.8 Reflection effect

The reflected light can be minimal, but still observable with high-

precision space photometry in exoplanetary systems. It can also be

prominent in well-detached binaries; therefore, TLCM manages it.
The primary’s reflection effect is simply characterized by

1 4 cosusini k 1—é? ?
2 a/Ry 1+ ecosv(t))

Ri(t) = fA

Here A, is the albedo of the primary. For the secondary, one has a
more complicated expression, which is valid for giant planets (see
Kane & Gelino 2011, and references therein):

er—l _ el—r

k G
x G(a) - (a/Rl 1+ ecos U(tj)) (40)
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The function G(e) is given by Kane & Gelino (2011):

o = arccos(cosu - sini)

Gla) = 107 (o,o9<ﬁ+2.394(ﬁ)2—u654( o )3) . 1)

Here one tries to approximate the effect that the albedo of a
giant planet varies with the insolation. As one can see, the time
dependence on eccentric orbits is quite complicated. Even in
circular orbits, the second term is not zero in the first bracket of
equation (40); therefore, this expression does not allow zero albedos.
Therefore, it is allowed to the user to put slightly negative albedos
as input value, but if the first bracket in equation (40) becomes
negative, the code automatically sets it to zero.

It is necessary to note that the beaming effect also exhibits a
time dependence of the form of cos usini. Therefore, I get for the
expression of the out-of-transit light variation owing to beaming
and reflection [approximating the G(«)-term in the Kane—Gelino
equation in the first order also by cos usin i]:

2
k K, -
Bi+ R~ | A —o)— | cosu sini 42)
a/R1 c
2
. ko \~ Kin .
B+ R =|(Af —op—— | cosusini. 43)
a/Ry ¢ q

This means that the components mutually interfere between the
beaming and reflection effect and show a kind of degeneracy. When
albedos are measured from phase curves or from occultations,
they should be corrected appropriately for beaming term. When
the beaming effect is modelled in the absence of RV information,
the most favourable case is R, &~ 0. In case of strong reflection
of the secondary, one cannot expect precisely measured beaming
amplitudes. The measurability of this effect depends on the actual
configuration.

2.9 Correlated noise model and baseline variations

Stars are often spotted (bright faculae and dark spots can be present
beyond flares in those LCs we study). A detailed spot modelling, i.e.
circular or elliptical-shaped spots changing their sizes and positions
due to differential rotations, is beyond the scope of this paper and
code. This is because the problem is severely degenerate, e.g. the
latitudes of the spots or their diameters and temperatures can hardly
be measured, owing to the fact that the overwhelming majority of the
available modern, space-based, ultraprecise LCs are obtained only
in white light (except a small minority of the CoRoT LCs, which
have observations in three uncalibrated colours). Therefore, the
temperature of the spot and hence its diameter cannot be estimated
independently of each other. The exact number of spots needed to
explain an LC is also a difficult question to answer.



However, it can be shown (e.g. Haywood et al. 2014) that the
effect of stellar spots and faculae is summarized in the LC and
acts as a random, Gaussian process. Another approach is if we
assume that a spotted LC is a result of an autoregressive process,
then they can appear as correlated noise in the data. Although such
an approach provides parameters that can hardly be related to any
physical or geometrical quantity (like the position of the spot), our
purpose is not a detailed spot modelling of the stellar surface like
Silva-Valio et al. (2010) do, but just to remove their impacts from
the LC.

An additional factor is that we may have correlated instrumental
noise in the LCs. In addition, if one bins the data — especially if they
are the long-cadence data of Kepler — then binning may introduce
red noise into the data (Ji et al. 2017).

Both effects, stellar activity and instrumental red noise, can be
characterized as an autoregressive process, or as a Gaussian process
or a sum of wavelets. | utilized the latter one, incorporating the
routines of Carter & Winn (2009) into the TLCM code. This is
because it is faster than a Gaussian process — because the covariance
matrix is known a priori — and it does not require the user to select
arbitrarily defined kernels and it is not sensitive to a badly selected
kernel. It contains only two free parameters to be fitted: o, to
characterize the white noise component and o, to give an amplitude
to the red-noise component. The reader should consult the paper
of Carter and Winn to get more details on their wavelet-based red
noise model.

When this correlated noise model is fitted, then the negative
logarithm of the likelihood is minimized rather than the x? value
of the fit. The routines of Carter & Winn (2009) give directly the
log-likelihood of the LC fit and I denote this with log L. Thus, I
minimize in this case

1 1
Q0 =—logL + 5 (v + Xiva) + Ez,le Y Inogy

1
+ 5 Nev In 2, (44)

where the terms in the brackets are the x2s of the RV curves of the
primary (k = 1) and secondary objects (k = 2) and j is the index of
the RV observations. If any of them is not available, then they are
set to be zero. The minimization of Q is done in the same way as
that of Xfo This optimization process is described in Section 4. A
further explanation of equation (44) is given in Appendix D.

The corresponding LC component is denoted by RN and it is the
output of the Carter & Winn (2009) routines:

RN_]' = RN(oy, o, tj)~ 45)

Often, stellar spots, airmass, or instrumental effects cause a slow,
parabolic-like variation in the flux. To remove this, I allow the user
to fit a parabola and a user-defined function W to the LC and the
centre of this parabola can be anywhere in time:

M = po+ pit; —tp) + pa(t; — 1,)* + W(x), (46)

where py, p1, and p;, are the coefficients of a parabola. 1, is the centre
of this parabolic trend, which does not necessarily coincide with the
epoch of transit. If p; and p, are set to zero and they cannot change
but py is non-zero, this means a vertical shift of the LC, which may
be necessary to correct normalization or background-, baseline- or
contamination-subtraction problem. Sometimes even higher order
baseline variations are needed, e.g. (Sedaghati et al. 2017) used a
fifth-order polynomial for the correct fit. Other parameters (e.g.
airmass, bias-level, FWHM of PSF, etc.) can contribute to the
baseline changes. Therefore, the code allows the user to use a
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user-defined function W(x) with fixed or free constants to model
the baseline variation better. This function may have different
independent variables than time 7 [x = ¢ is not a condition, but
x = x(#) should hold], e.g. x can be the seeing or roll angle of a
satellite, etc. The user manual gives more details on how to add
such functions to the fitting procedure.

2.10 The fitted LC model

I add all the aforementioned effects appropriately together to get

our final model. So, the model calculates the theoretically expected

flux (F,,) as

Fs(tj) + Fp(tj) + l3
(N+15L)-(1+h)

Fm([j): +p0+p1-(f/—fp)

+p2 (= 1)+ W) + RN (. 0. ),
7

where /3 is the third light contribution, 4 is a fitting parameter
that is able to correct the errors in normalization,® and N is the
normalization constant.

The stellar light is parametrized as

Fy(t;) = Tr(l1 + Bi(t;) + E1(t;) + Ri(1)), (43)

where Tr, By, E1, and R, describe the light variation due to transit,
ellipsoidal variation, beaming, and reflection effects for the star.”

As one can see, | consider the beaming, ellipsoidal, and reflection
effects as baseline variations.

The isotropic self-emission of the planet can be measured only
from secondary eclipses; otherwise, it just acts as an extra and
tiny contamination factor (third light). It seems that this planetary
self-emission is important only for (near-)infrared and occultation
measurements, because it is smaller by orders of magnitude than
the day-side radiation — reflected light — but it is comparable to
the primary star in stellar binaries. Therefore, it is included in the
model.

The planet’s flux variation is given by

Fy(t;) = Oc(n + By(t)) + Ex(t)) + Ry(t))). (49)

For a planet, one can set the limb-darkening coefficients to zero,
but there is an option to give non-zero values: If one models a low-
mass stellar companion, then this can be necessary, or planets with
atmospheres can also show limb-brightening effects.

The relationship between contamination, ¢, and third light, /3, is

C

I3 = . (51)

1—c
where /3 and ¢ are assumed to be constant in time; therefore,
the change due to, e.g. a contaminating variable star should be
removed by the user. c¢ tells us the fraction of the total observed
light that comes from any source other than the star and the planet.
Contamination may include a third, unresolved star, stray light,
background galaxy, even the residuals of background subtraction,
and also the effect of stellar spots and faculae. Because of faculae

8h is also able to play the role of the third light. Therefore, it is not
recommended to adjust simultaneously /3 and h: They are correlated to
each other.

In most of the applications, the reflected light of the planet from the star is
negligible, and the same is true for the ellipsoidal variations. However, when
we check yet unconfirmed planetary candidates and/or known eclipsing
binaries, then we have to include these terms into the fit.

MNRAS 00, 1 (2020)
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(bright rims in the stellar disc), ¢ can also be negative (Csizmadia
et al. 2013).

The normalization constant, N, is taken at photometric phase ¢ =
0.25:

N =F(Ty+ P/4) + F(To + P/4). (52)

In circular orbits, this is the moment of quadrature, i.e. we see the
planet at first quarter (the same is not necessarily true for eccentric
orbits!).

2.11 Binning and long cadence effects

The observed light is the time integration of the above calculated
flux:
1 ti+exp/2

Iy =—
Iexp tj—texp/2

F,,(t)dr'. (53)

In most of the cases, the exposure time ., is short enough that the
flux can be considered constant during the exposure and then 7,, =
F,,. When the exposure time is long relative to the time-scale of
flux variation, the integration in equation (53) should be performed
and this light value should be compared to the observed one when
I calculate the goodness of the fit without red noise:

Q_Xz_ 1 Z:.<10bs,j_1m.j>2
- - J
C

Ny o

1
+—2.,»zk(

(54)

2
Vrad,nhs.j,k - Vrad,m,j.k >
Nrvy

ORV, j .k

(for red-noise fit, see equation 44). The integration in equation (53)
is carried out via a simple Simpson integration, for example:

1 !
61, ~ Fp, (z,—%)—kz-Fm (;,-—?) +4-Fy (1))

fox fox
+2-F, (z,-+%>+Fm (z,-+%>. (55)

The ‘TimeResolution’ parameter governs how many points inside
the exposure time (‘subexposures’) are used to calculate the
modelled light. The aforementioned example in equation (55)
corresponds to TimeResolution = 5, meaning that 5 points are
used for the numerical integration. The user-defined TimeResolution
parameter can be 1, 5, 9, 17, or 33 according to the present sets.

The usage of this kind of integration is important for the long-
cadence data of Kepler as well as if the bin size of the data is
a significant part (about 10 percent or more) than the length of
ingress/egress length of transits (cf. Kipping 2010).

2.12 Check of consistency

When the parallax and magnitude measurements of Gaia DR2 —
or later data releases — and reliable — e.g. E(B — V) — reddening
values are available (cf. Lallement et al. 2019; Chen et al. 2019),
a simple consistency check of the modelling can be carried out.
The user is requested to collect Gaia magnitude G, parallax 7,
effective temperature T, — an independent determination may be
more precise than the Gaia value — and reddening value from
some source. The mean radius of the host star is then calculated
—assuming that the light contribution of the secondary is negligible
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—and by e.g. Monte Carlo method its error bar:
510g RGaia = Myoo — G —5 —Slogm
—3.1-(1.0£0.2)Ez_y — BC(Tyy) — 101log T /Te.

One may take the bolometric correction (BC) — effective tempera-
ture relationship for the Gaia photometry from Andrae et al. (2018).
The factor 1.0 & 0.2 reflects the fact that the interstellar absorption
in the Gaia photometric band G is about the same with 20 per cent
uncertainty than that in the V band (Andrae et al. 2018).

The stellar radius can be estimated in another way by TLCM
as well. Section 3 explains the details of how the Hurley, Pols &
Tout (2000) isochrones are built into TLCM, which utilizes the
spectroscopic stellar metallicity, effective temperature values, and
the mean density of the star measured from the fitted scaled
semimajor axis to obtain the stellar radius. This stellar radius is
denoted by Risochrone and it has an uncertainty denoted by o g isochrone-
Of course, one must have an agreement between the two kinds of
the radius, so the x? or —logL values are penaltized as

2

/) 1 RGaia - Risochronc
Xmoda = X~ t 5
2 o2 + ol
R,Gaia R.isochrone
or

2

R(}aia - Risochrone

1
—logL s = —logL + 3
\/UI%,Gaia + Ol%‘isochmnc

TLCM minimizes the modified quantities (index mod).

2.13 Usage of spectroscopic log g

When a reliable spectroscopic log g value is available, then this can
be combined with the Gaia radius to get the stellar mass as

logM =1logg —4.43 4+ 21log R, (56)

where the logarithm has decimal basis and g and the numerical
factor are in c.g.s.; R and M are given in solar units. Therefore, the
mean stellar density py,r can be obtained. The mean stellar density
can be also obtained from the fitted a/Ry,, value (cf. equation 59)
independently from the Gaia radius and from the spectroscopic
log g. Therefore, the user can use the expected pg,, as a prior in the
fit in such cases, based on the log g value, if this option is set.

3 ABSOLUTE DIMENSIONS

3.1 Method

The transit LC fit provides relative values: the planet-to-star radius
ratio, R,/R, and the scaled semimajor axis, a/R;. When one has the
RV curves of both components (or at least the beaming effect for
the two components), then one can calculate the masses of the two
components via

P(Ki + K2 Ka(1 = &)?

M, = — ,
2 Gsind i

P(K| + K2)?K (1 — )2
My — (K, 2) ‘1(. ) ’ 57
27 Gsin’ i
where G is the gravitational constant. Using the known period value,
Kepler’s third law yields the semimajor axis, and then one can scale

step by step the stellar radius from a/R, and planetary radius then




from Rp/R, (with Ry = R;). The code calculates these automatically
in this case with the corresponding error bars. Since the interstellar
absorption is uncertain in many cases, the code does not calculate
the BC and the luminosities from the radius and effective surface
temperatures to get the distances.

In the case when only the primary’s RV curve is measured —
which is the case for exoplanets that are actually SB1 binaries — I
get only the mass function:

Misin*i  K{P(l1—é)'?
My My G ’

(58)

TLCM provides two ways for the user to get the absolute masses and
radii for SB1. First, it uses the effective temperature and metallicity
values and substitutes them into the empirical calibrations of
Soutworth (2011) and this gives the true mass and radius of the star.
Secondly, it uses the analytic isochrone calculations of Hurley et al.
(2000) and it locates the star according to its effective temperature,
metallicity, and density. The density can be obtained from Kepler’s
third law, the measured scaled semimajor axis, and the orbital
period:

3r a

T o

Ps
From the stellar isochrones, the density parameter can easily be
determined at the given metallicities and metallicity uncertainties.
The resolution of the data base is 0.001 in metallicity Z. TLCM
checks which isochrones cross the area of the error box in T and the
density parameter at the given Z. The average of the corresponding
masses and radii in the selected isochrone parts yields the stellar
mass and radius and their error bars. Then the scaling of a/R; and
Ry/Rs is done in the same way as before.

The density parameter provided by the code can be located by
the user in any other isochrone calculation. I point out that the error
budget in the planetary parameters is generally dominated by the
uncertainties of the input stellar parameters. These uncertainties are
discussed in Appendix A.

4 OPTIMIZATION

TLCM uses a genetic algorithm (GA) to find the global minimum —
oratleasta value close toit—of the x? or —log L values. A simulated
annealing (SA) algorithm is then applied to refine the fit and MCMC
is used to estimate the error bars. A similar approach can be found,
¢.g. in Bakos et al. (2010) where an Amoeba scarch was utilized to
find a robust solution and then they estimated the uncertainties via
MCMC. A different version of SA was successfully applied to solve
and refine eclipsing binary LC parameters in, ¢.g. Pr§a & Zwitter
(2005).

4.1 Optimization by GA

The GA is based on the so-called ‘Harmony Search’ realization
(HS), which is a robust, fast, and reliable method to find the global
minimum (Geem, Kim & Lonatathan 2001). Of course, no method
is guaranteed to find the global minimum in every case, but Gao
et al. (2015) illustrate using many examples that HS provides fast
and good performance. I tested extensively the method on 2000
synthetic LCs with different signal-to-noise ratios and we found
very good results (for details, see Csizmadia et al. 2013). HS maps
the whole range of a prescribed parameter space quite effectively
as | show hereafter.
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The interested reader can find examples in Charbonneau (1995),
Metcalfe (1999), and Attia et al. (2009) to see how well GAs perform
for binary stars whose LC modelling is a very similar problem to
planetary transit fits.

Hereafter, bold-faced letters mean N, element vectors; N, is
the number of free parameters. I added constraints (box priors in
Bayesian terms) to HS; thus, I search for the solution around pg
within By. Here py is the centre of the searching box and By is its
half-size, both are vectors. E.g. py = (a/Rs = 10, k= 0.1, b = 0.5)
and By = (9, 0.1, 0.5). This means that a solution is searched in the
parameter range (1...19) for a/Rs, (0...0.2) for the radius ratio, and
(0...1) for the conjunction parameter and all solutions outside these
limits are ignored.

Let us assume for a moment that our fit has three free parameters:
alR, k, and b'. Then the vector p: = (10, 0.1, 0.5) is an individual
with (a/Rs); = 10, k; = 0.1, and b} = 0.5. The elements of this
vector are called genes, e.g. pj; is a gene corresponding to p;; =
a/Rs = 10 in this example. TLCM creates Niy;, such vectors and the
group of all individuals is called the population. The only constraint
is that 2 < Ny < 2000. Usually, Ny, is between 25 and 1000.
Although good results were found with N, = 25 for many synthetic
LCs, I recommend to use at least N, = 100 to avoid converging
too quickly and finding a local minimum instead of the global one.!°

Every individual is randomly selected from the searching box
(except the first individual that takes the values of the centre of the
searching box). Every individual has a fitness parameter, which can
be either Xiz or —log L; and the fitness is better if its value is smaller
in this problem.

Then the HS, as adapted by me, consists of the following steps:

(1) Create 2000 random sets of parameters and calculate the
corresponding fitness values. Then select the smallest Ny, fitness
values. This is a Monte Carlo-like search for the solutions, which
is not very effective after a while; therefore, it stops at 2000 trials.
Note that Step 1 is not part of the standard HS. It gives the advantage
of a better starting position for the subsequent steps. Since it takes
no significant CPU time, it is recommended to apply this step.

(2) 1 start an iteration with the iteration number /. Select uni-
formly distributed random numbers R; 5 3 4 5, each of which is
between 0...1 and which are independent of each other and their
values are changed in every iterational step. Some of these quantities
are vector random numbers, whose elements are random numbers.

(@) If Ry > 0.999, then pyst = po + 2 - (R, — 0.5) - B.
This step is just an absolutely random search (a Monte Carlo
step) in the whole investigated parameter space, which helps
to keep the predictive power of the algorithm. (R, is a vector
of N, different random numbers.)

(b) If Ry < 0.999, then the new test-individual 7 is built
up from N, different individuals: If R3 < 0.999 (the majority
of cases), then , = py,, where k is a random integer number
between 1...Njy; and if Ry > 0.999 then pieg » = pon +2 - (R4 —
0.5) - B,,. nis the index of the gene. This means that every gene
originates from a different chromosome (Fig. 7) and this is
the main difference relative to the Asexual Genetic Algorithm
(Cantd, Curiel & Martinez-Gémez 2009) where every new
child comes from only one parent and to Charbonneau (1995)
traditional GA where every child has only two parents. In HS,
a child has as many parents as genes. The derivation of new

10See also the footnote of Eastman et al. (2013) about the length of pseudo-
random sequences, which may have an effect on the solutions.
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Figure7. Anillustration of how Harmony Search selects trial solutions (test
individuals) in 2D. There are several individuals (denoted by diamonds),
and their group is called the population. Two of them are randomly selected
(denoted by larger diamonds, and called individuals 1 and 2). The first
randomly selected individual lends its first gene (=parameter 1) and the
second randomly chosen individual lends its second gene (=parameter 2).
This defines a central point around which a small ellipse is drawn according
to some prescribed value (e.g. the standard deviation of the population). A
small mutation is added, which has a Gaussian distribution with scatter equal
to the axis sizes of the ellipse, and the corresponding x 2 value of this trial
solution is calculated. If it is better than the worst solution in the population,
then the worst is replaced by this trial solution. From time to time, with
small probability, I try totally random trial solutions or one of the genes is
selected randomly from the whole parameter range under consideration.

individuals means that HS is able to create children that are
very far from the parents (the apple may fall very far from
its tree in HS) and therefore it is able to map regions of the
searching box that are quite far from the nearby location of the
parent individuals.

(c) The next step is mutation. The mutation rate is governed
by arandom number M that lies in the range 0...1, and its actual
value is valid for every Ny, steps; after that I choose another
random M. Rs ¢ are vectors with N, independent random
numbers. Rs’s components are uniformly distributed random
numbers between 0...1, while Rg’s components follow a
normal distribution with zero mean and unit standard deviation.
If Rs; < M for the sth gene, then #;; = tj; + Ree*#S(pan, 5). Here
S(pan, s) means the standard deviation of the sth components of
all ps. As the algorithm converges, the standard deviation of the
parameters will be smaller and smaller, so the mutations will
be also smaller. This self-governing property of the algorithm
provides convergence.

This kind of mutation maintains genetic variety even when M
is by chance very small. Note that during the whole iteration
process the expected value of M will be 0.5.

The code does a check not to leave the searching box; if that
happens I try another random R,, R; numbers.

(d) Then the corresponding fitness value is calculated. If this
is smaller than the one with the highest fitness in the actual
population, then I replace this worst individual with t;.

(e) Steps (a)—(d) are repeated until one of the following two
criteria is fulfilled: (i) the ratio of the maximum and minimum
x? values in the current population falls below 1.001; (ii) the
maximum number of iterations is reached. This is set to 300 x
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Nini, (in other words the maximum number of generations is
300). In practice, I experienced that about 40-60 generations
are enough in many cases to reach the first terminating
criterion.

Usually the GA part is computationally inexpensive. Compared to
other methods, it is much faster and more reliable as a means of
finding the global minimum than other methods like AMOEBA,
LM, ant colony, and firefly — see the compilation of examples by
Geem (2009).

4.2 Refinement by SA

The HS solution is defined as an average of the final generation. This
solution is refined by SA. SA is an algorithm to optimize a function
and actually it is a method quite close to the well-known Monte
Carlo Markov Chain processes. I do not need to map the whole
parameter space again; I want to explore only the small vicinity
of the GA solution. Therefore, I implemented SA in the following
way.

One SA chain starts with the parameter values found by the GA
procedure: toq = thna, ga. Then a new test-parameter set is produced
by a random perturbation of the previous state with

ti =t +w-r;-v, (60)

where w is a N-element vector containing Os and 1s. These two
numbers are chosen randomly for every parameter with the rules
that at least one 1 should be in the w vector and the fraction of
Is is equal to or less than 0.25 + 0.75/N,,. The constants 0.25 and
0.75 are heuristic ones. The goal of this multiplicative factor is
to imitate the Multiple Subset Method (e.g. Wilson & Biermann
1976), so it keeps some of the parameters constant and others are
free during one step; in the next iteration step another w is chosen,
also randomly. This helps to resolve the possible degeneracies and
intercorrelations between the parameters. Since I do not know a
priori which parameters are strongly correlated, I select different
subsets every step.
The code calculates the quantity

P, =exp (— (Xiz — XSld) /ZTSA) . 61)

Tsa is the so-called ‘SA temperature’ that is unrelated to any
physical temperature of the modelled objects. tyq and x2, are
replaced by t; and x 7, respectively, if P; > u, where u is a uniformly
distributed random number between 0...1. Note that that P; > 1
always when x? < x2,.

The number of accepted solutions relative to all trials is the
acceptance rate. Solutions with better fitness are always accepted.

Tsa is adjusted until I have an acceptance rate of 24 percent
(with £1 percent tolerance), which is a recommended value for
MCMC in multiparameter fits (e.g. Dunkley et al. 2005). When this
is reached, SA is restarted with this well-adjusted 7sa.

The stepsize v is initially defined by the standard deviation of
the parameters in the final GA generation, but after setting the
SA-control parameter Tsp, it is updated every iteration step: If
the acceptance rate of the iterational steps falls below 23 per cent,
TLCM decreases the stepsize little bit, and if it is over 25 per cent,
the stepsize is increased.

SA is almost identical to MCMC but it has one main difference
to MCMC. SA differs from MCMC in the sense that I change Tsp



after every N = 2000 iteration steps:!!
TSA - Tchange : TSA , (62)

where Tipange i a user-defined number. The decrease of the ‘SA
temperature’ ensures that I do not leave the found — likely global
— minimum region and it will be mapped eftectively (the apple
does not fall far from its tree now). Note that the hyperspace of
the LC modelling has a very complicated structure (Milone &
Kallrath 2009). The Markov Chain processes are less effective
because they need a lot of iteration steps and thus CPU time, and
their performance depends on the probability distribution of the
parameters, which is not known a priori (Dunkley et al. 2005).

MCMC is able to ‘go up the hill’, which means that it accepts
worse solutions sometimes and in this way it escapes from the found
minimum even if it is a global minimum. Although it is able to go
back to the global minimum, it does this in a random way and
generally after many steps. It is not needed that MCMC explores
the parameter range because it was done more efficiently already in
the GA phase of the optimization. One needs to explore the vicinity
of the GA-found minimum. Therefore, I use SA to force the Markov
chains not to go far from the solution GA found. The decrease of
the ‘SA temperature’ keeps the solution close to the found likely
global minimum range, saving CPU time but keeping the reliability
of the solution too.

Note that when one sets Tchange = 1 and all components of vector
ware 1, then the method is equivalent to MCMC. When Tipynge = 0
only better solutions are accepted, and when it is much bigger than
unity then it becomes a non-controlled random walk.

4.3 Uncertainty of the parameters

The uncertainties of the derived parameters are estimated by running
two or more MCMC chains. Now the ‘SA temperature’ is not
changed and the w vector contains only 1s in equation (60). The
adjustment of the stepsize is done as it was done for SA. The
first 6000 steps are discarded automatically from the chain. The
convergence tests described in Section 4.4 should be watched by
the user to see if convergence is reached or a longer chain is needed,
and the user must check whether the overall acceptance rate was
close to 23 per cent or not.

TLCM uses the recommendation of Dunkley et al. (2005) to run
shorter MCMC chains, allowing one parameter only to vary and
adjusting the width of the proposal distribution until 90 per cent of
acceptance rate is reached in every of these chains. Then another
shorter chains were run when all free parameters could vary and the
proposal distribution have been multiplied with the same factor until
23 percent acceptance rate was reached. Once the right stepsizes
were found, the MCMC is restarted with the prescribed number of
steps and the stepsizes are kept constant.

The lower and upper 1o error bars are estimated via a common
16-84 percent rule, and the final solution is the median of the
MCMC chains.

The code is also able to perform a bootstrap analysis for
estimating the uncertainties. However, it takes more CPU time than
MCMC and usually provides smaller error bars. This can be an
inherent property of bootstrap.

"I"The choice of 2000 is arbitrary.
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4.4 Convergence test

TLCM runs at least two different SA and MCMC chains, but
the user can define a higher number of chains. The first chain
starts from the best solution GA found; the starting points of
the others are taken from randomly selected solutions around the
best one. Usually, SA refines further a little bit the GA solution.
For each free parameter separately the standard deviation of the
parameter in the whole sample (denoted by W) is calculated, and the
standard deviations of the mean solutions of every chain (denoted
by B) are determined. Then I calculate the Gelman—Rubin (e.g.
Croll 2006, and references therein) convergence number for every
parameter:

nl—] 1 B
R = I+—) —. 63
n +( +nc)W (63)

Here n, is the chain length and r. is the number of chains. When this
R is over 1.1 for any of the parameters, then there is a degeneracy
in some of the parameters (the chains converged to different values)
or the chain was too short and convergence was not reached (Croll
2006). Then it is advised to repeat the analysis with longer chains
or with different settings.

I used another heuristic convergence test too. Since SA, MCMC,
GA, and several other methods depend on the random numbers used
for the iteration process, one cannot expect that the results will be
the same after each new start (except if one uses the same random
number sequence for the new run, which is a mistake). However,
one can expect, suggested by the theorem of big numbers, that the
solutions will be reasonably close to each other if a code is rerun
twice or more. The ‘reasonably close’ is a matter of convention. Let
us define the quantity X to measure the deviation of two runs for a
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Figure 8. Convergence test results. The columns represent one convergence experiment with different settings for the SA run, and horizontally one can see
the different parameters whose convergence were investigated (a/Rs, k = Ry/Rs, b’, uy, u_). Bach cross gives the end result of one run and the vertical lines
are the corresponding error bars. The x-axis represents the run number. The y-axis scales are always the same within one row for sake of easier comparison.
When the number of chains is only two (first and last columns), there are fluctuations in the end results from one run to another one, especially in the limb
darkening parameters and in the conjunction parameter. When the number of chains is 50, the solutions starts to stabilize and the fluctuations are much smaller
among the consecutive runs. When the number of chains is 400, stable solutions are obtained.
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certain parameter p as and this is calculated for each parameter separately. It is assumed
for this analysis that the distributions of the likelihoods in the two

X = =D (64)
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Table 3. Comparison of different chain numbers, chain lengths, and SA temperatures. max(p) — min(p) means the maximum and minimum values of a

parameter in the tried 20 runs.

Parameter APallowable ne=2 ne=2 ne. =50 ne =50 ne = 400
n; = 100, 000 n; = 100, 000 n; =4, 000 n; = 10, 000 n; = 500
Tsp =0.95 Tsp = 0.81 Tsa = 0.81 Tsa = 0.81 Tsa = 0.81
max(p) — min(p) max(p) — min(p) max(p) — min(p) max(p) — min(p)  max(p) — min(p)
alRg 0.65 0.831 0.511 0.210 0.236 0.115
Rp/R 0.0017 0.0023 0.0014 0.0005 0.0006 0.0004
' 0.09 0.234 0.205 0.050 0.078 0.034
Uy 0.07 0.222 0.218 0.029 0.050 0.020
U_ 0.23 0.702 0.532 0.152 0.135 0.067
Condition (equation 68)
fulfilled? No No Yes Yes Yes
-7590 ; ; We expect that X will scatter around zero; the probability that it
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Figure 9. Result of a grazing transit test. The shifted minus log-likelihood
is plotted against the fixed impact parameter. Scaled semimajor axis, radius
ratio, red noise parameters, etc. were fitted to NGTS-1b (Bayliss et al. 2018).
The minimum of the found —logL values and the 1o uncertainty ranges are
plotted. As one can see, the fit is better if the impact parameter changes
from zero to about 0.8. After that, the fit quality is practically constant. The
very last point has a worse fitness parameter because the radius ratio was
constrained and the fit converged to the side of the searching box. From
this figure, the grazing nature is clear and one can say only that the impact
parameter is bigger than 0.8 but an upper limit cannot be given.

runs are normally close to the solution. Here, p; and o; are the peak
of this distribution and its scatter.

The cumulative probability distribution function (CDF) gives the
probability that this X can be smaller than some X. cut-off value
just by chance. The CDF of Student’s z-distribution will give us an
answer that these two solutions differ from each other just by chance
by the value X. The choice of the cut-off value is somewhat arbitrary;
for this work X. = 0.1 was selected. That means that we calculate
the probability that two code runs produce smaller difference in
the end results than 10 percent of the quadratically weighted
average of their lo error bars. Note that statistically speaking
even lo or 30 difference could not be stated as ‘statistically
significant’ difference, so taking this limit we have a strict criterion
to get the same answer after two runs. Recall that CDF gives the
probability

CDF = P(X < Xo). (65)

differs from zero not better than £X, is given by
P(—X. <X <+X)=PX <+X)— P(X < —Xo). (66)

Using the expression available in textbooks for Student’s #-
distribution, I have got that

P(—=0.1 < X <0.1) = 0.472; (67)

therefore, rearranging equation (64), the maximum allowable dif-
ference between the runs is

A paiiowavle = 0.472 \/ 012 + o5~ 0.4720, (68)

where & is the quadratic average of the error bars. Similar argumen-
tation can be taken when one compares the results of two studies or
two codes.

An example is shown for such a convergence test in Fig. 8
and in Table 3. I used the CoRoT LC of CoRoT-20b’s transits
and performed fits with different chain numbers and chain lengths
for the SA part. I repeated the experiments with the different
settings 20 times. In Table 3 the maximum difference of the derived
parameters in the 20 runs is tabulated.

The total number of iterations was often the same (200 000),
but in the first two attempts 2 chains x 100000 steps/chain were
carried out with different SA temperatures. Two other experiments
consisted of 50 chains x with 4000 and 10 000 steps/chain, and the
last one was based on 400 chains x 500 steps/chain.

The conclusions drawn from Fig. 8 and Table 3 are as follows:

(1) The maximum allowable differences in the main parameters
are as follows: 0.65 (in a/Ry), 0.0017 (in Ry/R;), 0.09 (in conjunction
parameter b'), and 0.07 and 0.23 in u, and in u_, respectively.

(i1) Using only two chains with 100000 steps, the difference
between the separate runs is greater than the aforementioned
prescribed limits, although decreasing the SA temperature gives
slightly better results and in & the condition given by equation (68)
is already fulfilled. I also tried smaller values for Tchange and it seems
that it provides very nice results. However, complicated LCs of some
selected Kepler eclipsing binaries produced better results with two
longer chains (up to 100 000) and with high control parameter for
SA (Tehange = 0.98). Determining the optimal value of Tsa will be
the subject of another study.

(iii) Each of the other three combinations of chain numbers and
chain lengths resulted in deviations well within the prescribed limits.
The smallest deviations and therefore best results were obtained by
400 short chains (chain lengths were 500 only), but 50 chains (4000
and 10 000 steps in each chain) also produced acceptable results.
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Table 4. Results of joint LC-RV curve modelling of CoRoT-1b and comparison to the results
of Barge et al. (2008). TLCM used NINIT=1000, nmax=100 000, and nchain = 10 with a
thinning factor of 10. For TLCM modelling, the same effective temperature and metallicity
were applied as in Barge et al. (2008). The last column gives the differences between the two

solutions in terms of ‘sigmas’. This is defined as: |« — b|/1/02 + rrb2, where a and b are the
same parameters from the two solutions and o, are the two error bars in the two studies.

Parameter Barge et al. (2008) TLCM

vy [kms~] 23.354 + 0.008 23.326 + 0.021 120
K [ms™1] 188 + 11 188 + 17 0o
RVgir [ms~'d™1] ~1 1.03 &+ 0.1 -

Terr [K] 5950 £+ 150 - -

[M/H] —0.3 £ 0.25 - -

Mar 095 + 0.15 0.95 + 0.16 0o
Rytar 1.11 £+ 0.05 1.12 £+ 0.06 0.10
Mytanet/Mup 1.03 £ 0.12 1.03 £+ 0.14 0o
Rplanet/Ryup 1.49 + 0.08 1.53 £ 0.10 0.30
Epoch - 2450000 4159.4532 + 0.0001 JD 4159.45296 + 0.00008 HID 1.80
iy 0.71 £ 0.16 0.60 £ 0.11 0.60
Uu_ 0.13 £ 0.30 0.10 £ 0.31 0.10
alRgar 492 + 0.08 4.86 + 0.06 0.60
Rplanet/Rtar 0.1388 + 0.0021 0.1403 + 0.0014 0.60
i [deg] 85.1 £ 0.5 84.8 + 04 0.50
PO [ppm] - —27 + 20 -

1.000
0.995
0.990
0.985

0.980
0.975

Normalized flux
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Figure 10. The LC of CoRoT-1b. Upper panel: the black points are the
observations; the red solid curve is the LC fit. Lower panel: the residuals of
the fit.

Therefore, it seems that two chains can perform quite close to the
desired limits, but one has to recommend using more chains to get
a stable and good result. The chain length can be as small as 4000,
but these recommendations are based only on this particular case. It
will be the subject of another study to explore how this stability
and convergence depends on, e.g. the signal-to-noise ratio of
the data.

Fig. 4 of Csizmadia et al. (2013) shows another experiment with
the code. 2000 synthetic LCs with different transit depths/white
photometric noises (d/o ratio) were modelled and it was found that
the code is able to recover the parameters very well even for noisy
LCs. According to that test, if the conjunction parameter is less than
0.85, then d/o > 25 is needed to recover the semimajor axis better
than 5 percent, d/o > 50 for recovering radius ratio better than
1 percent, d/o > 100 to recover b better than 10 per cent and the
same limit is valid to recover the limb-darkening coefficients better
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Figure 11. The RV curve of CoRoT-1b. The red points show the observed
RV data together with their uncertainties and black curve is the model
fit by TLCM. The observed data points were corrected for the RV drift
phenomenon (Table 4, Section 8.1).

than 3 per cent. It was also found that if » > 0.85 then the solution
for shallow transits becomes uncertain because we lose the inner
contacts and the corresponding information.

Beyond the Gelman—Rubin statistics and the heuristic test pre-
sented here, other useful convergence tests are mentioned, e.g. in
Ford (2006). When the user wishes, these tests can be carried out
because the chains are saved into a separate file.

4.5 Parameter and uncertainty checks

The code checks the input values and non-physical values. In the
case of period, scaled semimajor axis, radius ratio, third light,
albedos, mass ratio, effective temperature, and surface brightness
ratio, only positive values are accepted. In the case of /e sin @ and
/e cos w, if the eccentricity becomes larger than 0.9999, then it is
set automatically to 0.9999 as the maximum allowed eccentricity
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Figure 4. The RV variation during the transit of a 3 d-orbital period hot
Jupiter (abscissa: time in days, ordinate: RV in ms~'). Relevant parameters
used to produce this plot were: a/Ry = 14,k =0.1115,h=0.6,e =0,K; =
0.2 kms™!, Vsinly = 18 kms™!, gy = 0°, and V,, = 0 kms~'. The two
curves correspond to two different limb-darkening coefficients of the same
event, one to the Sloan g’ band and one to the Sloan z, band. The maximum
difference is ca. 3 ms™', while the amplitude of the RM effect — relative to
the RV curve due to pure orbital motion — is about 19 ms~!. This means
that the two curves differ by about 16 percent. Such a difference is much
smaller than the measurement error today and therefore one can neglect it.
Consequently, a mean limb-darkening coefficient can be used for modelling
the RM effect. (The same is not true for the LCs; Csizmadia et al. 2013.)
However, higher precision RV measurements coming in the future, e.g. by
ESPRESSO, or smaller RV amplitudes due to smaller/more distant planets
will require a study of this issue. The effect of stellar spots on Rossiter
measurements should be also studied.
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Figure 12. RV drift in CoRoT-1b. The black curve is the model fit and the
red points with vertical lines are the observed data and their uncertainties.

in TLCM. The impact of the parameter checks on the posterior
distributions is not studied so far.

If any of the proposed parameter value is beyond the prescribed
limits of the searching box, the code replaces this proposal by a new
one until the proposal will fall inside the prescribed searching box.

The user is asked to check the solutions after the code’s run
finishes, and if they converge to the edge of the searching box, then
probably the searching box size was too small; hence, its location
and/or size should be changed. It is also a good practice if the
posteriori distribution peak of the MCMC chains is close to the
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Figure 13. LC solution of CoRoT-20b with TLCM. Upper panel: the black
dots show the processed, normalized observed fluxes of CoRoT-20. The
transit of the planet b is clearly visible. The blue curve is the fit without
the red-noise effects. The red curve shows the transit fit plus the red-noise
effects. The red curve is the optimized curve during the fit procedure. Lower
panel: the residuals after subtracting the transit model -+ red noise model.
The red noise is not significant in this LC.
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Figure 14. RV curve of CoRoT-20b and its fit obtained by TLCM. Different
colours represent RV data obtained by different instruments: green: FIES,
blue: HARPS, and red: SOPHIE. Details of the observations can be found
in Deleuil et al. (2012).

centre of the searching box; otherwise, significant biases can occur
in the estimate of the median and 1o limits.

S GRAZING TRANSITS

Grazing transits are transits where the condition
l—k<b <1+k (69)

holds; in other words, the full planetary disc does not cover the
stellar disc. In such cases where the inner contacts are missing,
there is no so-called ‘flat part’ of the transit and the information
content is much less. More severely, the impact parameter cannot
be fitted. An example is shown in Fig. 9 showing the —logL as a
function of fixed impact parameter values for NGTS-1b (Bayliss
et al. 2018). As one can see in such a grazing case, only a lower
limit can be given for the impact parameter.

Since the transit duration is linked to the impact parameter in
circular orbits as

D=£R V(1 +k)?—b2, (70)

s
Toa
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there is a mutual degeneracy between the scaled semimajor axis
alRy, the radius ratio k, and the impact parameter b.'> The analysis
of this equation shows that if we increase b, then its change is fully
compensated by increase of k, so one can get only a lower limit for
the radius ratio in such cases. It is important to emphasize that in
case of grazing transit the transit depth does not give the value of
the radius ratio because only part of the planetary disc plays a role
in the transit (again, only a lower limit can be given).

TLCM offers the possibility that it fixes the conjunction param-
eter between certain user-defined limits (e.g. between 0 and 2 with
Ab" = 0.05 resolution like in Fig. 9) and it searches for solutions at
fixed impact parameters. Then the observed Q values can be used to
estimate the lower limit of conjunction parameter and radius ratio
(cf. Fig. 9).

In Csizmadia et al. (2015), it was shown that if one has the
stellar density (e.g. from asteroseismology, or isochrone-fitting to
spectroscopic parameters and applying Kepler’s third law), the value
of a/R can be constrained and it can be fixed or it can vary around
a well-defined value within its uncertainty ranges. This resolves the
degeneracies due to the grazing transit nature.

6 MULTICOLOUR LCS AND STELLAR SPOTS

The released version of TLCM analyses only single-colour LCs,
although an ad hoc version already exists for four channels. A
version was produced for analysis of multicolour LCs with arbitrary
number of channels (MSc thesis of Sandor Kunsagi-Maté, Eotvos
University Budapest, 2018). Including an analytic stellar spot model
is also a feature I would like to introduce in the future.

7 AVAILABILITY OF THE CODE

The code is running under IDL (version 6.1 or higher), and can be
used in batch mode. The code was tested under the free GDL and it
runs under it (Windows, Unix, or Linux).

The code and its user manual are freely available and can be
downloaded from the following homepage: www.transits. hu.

8§ EXAMPLES AND VALIDATION

Although studies where TLCM was used were listed in the ‘In-
troduction’ section, several new features — e.g. the out-of-transit
features, red-noise fit — were added to the code in the meantime.
In order to show and validate the new capabilities of the code, the
following results are presented hereafter.

8.1 CoRoT-1b

CoRoT-1b was the first exoplanet discovered from space (Barge
et al. 2008). The RV data were taken from Barge et al. (2008) but I
converted the time records given in JD therein to HID, because the
CoRoT photometric data are already in HID. The photometric data
were obtained from the public CoRoT archive and they were reduced
in the same way as in the case of CoroT-20b (see Section 8.2).

A fixed eccentricity was used. The fitted parameters and the
results are summarized in Table 4 where the reader can find the

2Equation (70) can be obtained from equation (4) by substituting e = 0,
8 = 1 + k, which is valid in the moment of the first and last contacts, and
approximating sin?i ~ 1 as well as cos(v| + ) & 1 — (D/P)? in the moment
of the first contact.
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results of Barge et al. (2008) for comparison. Notice that Bonomo
et al. (2017) confirmed the existence of the RV drift, too.

The results are shown graphically in Figs 10-12. The observed
RV drift in Fig. 12 shows that this system deserves a new RV study
to confirm the presence of the drift and to establish its exact nature
and cause.

The agreement between the results obtained by Barge et al. (2008)
and provided by TLCM is good and this validates the code. The error
bars in the stellar mass are, however, smaller than those in Barge
et al. (2008), maybe due to different isochrones being used. This is
also reflected in the smaller error bars in the planetary mass. The
other error bars are very close to the ones in Barge et al. (2008),
sometimes slightly bigger (like in the case of K and V, ) or smaller
than those in their cases, but the difference is not significant.

8.2 Modelling of CoRoT-20b

Transits of CoRoT-20b were detected by Deleuil et al. (2012).
Although the present author was co-author of that paper, the joint
transit LC and RV modelling was done by a different code: Formal-
ism of Gimenez (2006a) and AMOEBA-optimization was utilized
as explained there. Therefore, the analysis therein is independent
of the TLCM analysis here. According to their characterization, the
planet orbits a supersolar star (mass: 1.14 & 0.08 solar mass, radius:
1.02 £ 0.05 solar radii, and Ty = 5880 4+ 90 K with a metallicity
of [Fe/H] = 0.14 £ 0.12). The planet has relatively long period
among the transiting exoplanets (P = 9.242 85 d) and has a high
eccentricity (e = 0.56).

The same RV data were used for the present fit what Deleuil et al.
(2012) presented. The CoRoT LC was downloaded from the CoRot
data archive.'? The white flux data were used, only with flags 0 (valid
measurement) or 1 (outlier, but no reason to remove it). All observed
transit events were cut and the vicinity of each transit (3 times of the
transit length) was fitted by a parabola using the out-of-transit points
only, and then all flux values — including in-transit points too — in
these windows were divided by the corresponding parabola. Then
the LC was folded with the ephemeris given in Deleuil et al. (2012).
A joint fit of the LC and RV data was then performed. The results
are shown in Figs 13 and 14 and in Table 5. A good agreement was
found by the present results and those of Deleuil et al. (2012). All
the differences between the results of Deleuil et al. (2012) and of
this study are much smaller than the respective error bars, so this
validates the code again.

8.3 Out-of-transit variations

In Figs 15-18, some examples are shown for the out-of-transit
variation calculations. Table 6 presents the parameters used to
produce these figures. Figs 15 and 16 present circular orbit cases.
Figs 17 and 18 show examples with an eccentric orbit (esinw =
0.3, ecosw = 0.5, s0 e = 0.7823 and w = 30.96°).

Four eclipsing binaries observed by Kepler were modelled with
this capacity of the code in order to check TLCM. The binaries are
selected from Faigler et al. (2015) because they have RV curves
observed too. This provide a unique opportunity to compare the
observed RV amplitudes to the estimates based on the beaming
effect in the LC.

Bhttp://idoc-corot.ias.u-psud.fr/sitools/client-user/COROT_N2_PUBLI
C_DATA/project-index.html
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Table 5. Comparison of the LC solutions of CoRoT-20b obtained by this study and by Deleuil et al. (2012). RN: red noise. Notations
as usual. Eccentricity and argument of periastron were calculated from /e sin w and /e cos w, respectively. Inclination is derived from
impact/conjunction parameters. The inclusion of the red noise did not yield different fits and the red noise is negligible in this LC. The
column difference gives the difference between the solutions of Deleuil et al. (2012) and the one obtained by TLCM without red noise.

The o is defined as for Table 4.

21

Parameter Deleuil et al. (2012) TLCM, with RN TLCM, without RN Difference
Orbital period 9.242 85 4+ 0.00030 d 9.24285 d (fixed) 9.242 85 d (fixed) -
Transit epoch BJD 55266.0001 = 0.0014 55266.0010 & 0.0017 BJD 55266.0009 = 0.0016 0.40
esinw 0.468 £ 0.017 - - -
ecos 0.312 + 0.022 - - -
Jesinw - 0.630 + 0.042 0.627 + 0.024 -
Jecosw - 0.421 + 0.050 0.425 + 0.028 -
e 0.562 + 0.013 0.574 + 0.035 0.574 + 0.020 0.50
 [deg] 56.3134 563 +3.6 559+20 0.10
K 454 +9ms~! 458 + 19 ms™! 458 + 11 ms™! 0.20
v, 60.623 = 0.006 kms ™! 60.618 £ 0.014 kms™! 60.619 £ 0.008 kms™! 0.50
RV offsets:
HARPS-SOPHIE 93+ 11 ms™! 85 £35ms™! 87 £20 ms~! 0.30
SOPHIE-FIES 163 £ 20 ms~! 166 + 37 ms~! 168 + 21 ms~! 0.20
Ry/Ry 0.0842 + 0.0017 0.0898 + 0.0049 0.0865 + 0.0052 0.40
b 0.26 + 0.08 0.01 +0.31 0.03 + 0.56 0.40
alRs 18.951053 17.77 +2.69 18.15 +2.57 0.30
Po - 425 £ 228 ppm 275 £ 139 ppm -
inclination 88.21 = 0.53 deg 89.90754° 89.7757 deg 040
o, - 2225 + 121 - -
ow - 2363 + 228 - -
Stellar density 1514043 gem™3 1.65 £ 0.68 gem™? 1.35£0.58 gem™> 030
(Mia/M) P I(Rytar/R ) 102270034 1.05+£0.14 0.98 +0.14 030
Mgar/Mg 1.14 + 0.08 1.02 +0.19 1.00 + 0.05 1.50
Ryu/Ro 1.02 + 0.05 0.95 + 0.06 0.96 + 0.16 0.40
Mptanet/Miup 424 +0.23 3.75 + 0.46 3.77+0.43 1.00
Rotane/Miup 0.84 =+ 0.04 0.90 + 0.10 0.85 + 0.09 0.1
1.002 b 0.00015 T T
stellar beaming  +
1L ] stellar ellipsoidal
ﬁ 0.0001 reflection of the planet  *
0.998 1
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x
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Figure 15. The full LC with all LC components of both components
totalized. The parameters in Table 6 were used to produce this plot.

The LC data were downloaded from the public Kepler MAST
archive and periods were taken from Faigler et al. (2015). Every
orbital cycle was divided by its median value, and then the cycles
were folded and binned in the orbital phase space to 500 data points.
These LCs were fitted. Effective temperatures of the primaries were
also taken from Faigler et al. (2015) and following them I set solar
metallicity for these four binaries.

The beaming, reflection, and ellipsoidal effects beyond the
transits and occultations were included.

Figure 16. A zoom to the different components of the model presented in
Fig. 15. The parameters reported in Table 6 were used to produce this curve.
The red curve and the green curve are the beaming and ellipsoidal effects of
the host star, respectively, and the blue curve is the reflection effect that oc-
curred in the planetary companion. The x-axis is phase, and the y-axis is flux.

The LC solutions are presented in Tables 7 and 8. Table 7
compares the measured RV amplitudes (Kry) to the RV amplitude
estimates from beaming effect done by Faigler et al. (2015), denoted
by Kpeaming in that table, and also compares them to the ones TLCM
provided from the LC fit (denoted by Kticm, beaming)- Figs 19 and
20 show examples of these fits.
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Figure 17. The full LC with all LC components summed up. The param-
eters in Table 6 were used to produce this plot, but an eccentric orbit was
set with esinw = 0.3 and ecos @ = 0.5. The bump before the transit is the
so-called periastron effect or ‘heart-beat’ binarity effect.
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Figure 18. A zoom to the different components of the model presented in
Fig. 17.

Table 6. Parameters used for producing Figs 15-18. A circular
orbit was set. Ellipsoidal coefficients not reported in the table
were set to zero and the stellar albedo was zero.

Parameter Value
Planetary albedo 0.3
Oy =0, 0.0
alRg 9.0
Rp/R 0.1115
b 0.6
Uy s 0.5
U_ g 0.2

I8} 0.0

E 0.0

P 3.0
v, 0.0
K 5.0kms~!
Ar 0.5
ap 100 ppm
S 0 ppm
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Table 7. Comparison of the RV amplitudes obtained from separate
RV fits and from photometric beaming amplitude by Faigler et al.
(2015), and photometric beaming amplitude by TLCM.

System Kgrv Kbeaming Kr1.0M, phot
KIC 2851474 16.81 + 0.9 154+ 19 204 + 0.5
KIC 4161474 237 £ 15 9.1 + 1.1 16.6 £ 3.0
KIC 6515722 16.8 + 1.7 174 + 1.2 174 + 0.5
KIC 9285587 198 £ 1.4 159 £ 24 19.6 £ 1.3

The total sum of the differences in the RV amplitudes measured
from the RV curve and from the LC curve is 20.51 kms~! by Faigler
etal. (2015), while it is just 11.04 kms~! by TLCM. In average, the
difference between the RV and beaming-based RV amplitudes is
5.12 kms~! by Faigler et al. (2015) and 2.77 kms~! by TLCM, so I
have 84 per cent improvement in the beaming-based RV amplitude
estimates in these four cases relative to the previous study.

9 SUMMARY

In this paper, I presented TLCM, a computer code to simulate,
to analyse, and to fit LC and RV curves of detached eclipsing
binaries and transiting exoplanets. It utilizes the Mandel & Agol
(2002) model and routines to describe the transits and occultations
themselves, but it is extended to include the beaming, ellipsoidal,
and reflection effects of the primary and secondary objects, which
allows the user to analyse the phase curves or out-of-transit
variations of an exoplanet or a companion star. The effect of binning
is also included, and the contamination is considered, which can be
owing to an unresolved, physically bounded or not bounded com-
panion, a background galaxy, stellar spots and faculae, background-
subtraction problem, etc. Several other auxiliary quantities are used
to fit the LCs, like baseline corrections, shifts in the flux level or
in the epoch. A red noise model based on the wavelet models and
routines of Carter & Winn (2009) is included.

The code is able to perform a joint LC 4 RV fit and a simplified
RM effect is included.

Various outputs — ASCII files and figures — are produced by
TLCM, which can be used directly in the publications or the user
can make his/her own figures. The absolute dimensions — mass and
radius of the primary and the secondary — are calculated for SB2
binaries in a model-independent way. When only one RV curve is
available (SB1 binaries), then the primary’s mass and radius are
estimated from the temperature and metallicity of the primary and
from the mean stellar density measured from the LC. When no
RV measurement is available, then the beaming effect is used for
this purpose. When the quality of the LC does not allow the fit of
the beaming effect, then only the radii of the two components are
estimated like in the case of SB1 systems. For this estimate, TLCM
uses the analytic expressions of Hurley et al. (2000) or the empirical
calculations of Soutworth (2011).

Improvements in the understanding of the beaming effect are
presented in this study, which includes a more physical description
of the reflection and ellipsoidal effects that interfere with the
beaming effects. This yields a more perfect agreement between the
RV amplitudes measured from the RV curves and the ones obtained
from the LCs. However, further improvements of TLCM include
multicolour, very precise LCs, because then the reflection and the
beaming effect could be monitored on different wavelengths and
their effects could be separated in a much easier way.
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Table 8. LC solutions of KIC 2851474, 4169521, 6515722, and 9285587. LC data are taken from the public Kepler
MAST archive, and periods are taken from Faigler et al. (2015). All orbits were assumed to be circular.

Parameter KIC2851474 KIC4169521 KIC6515722 KIC9285587
Orbital period 27682925 1.172555 7000 3.8170428 1.8119579
[days]

Kbeaming [kn/s] 204 + 0.5 16.6 + 0.6 174 + 05 196 + 1.3
Ro/R; 0.0103 & 0.0004  0.0446 £ 0.0010  0.0094 = 0.0006  0.0136 = 0.0034
b 035 + 0.03 0.94 + 0.05 049 + 0.03 0.59 + 0.06
alRy 398 + 0.11 21+ 0.1 6.06 + 0.11 322 + 0.11
Stellar density 155 + 10 133 + 10 288 + 15 193 + 20
[gem™]

MM 1.99 + 0.12 2.10 £ 0.20 20 £ 0.17 174 + 0.53
RilRe 272 + 0.06 2.87 £ 0.09 221 + 0.08 241 + 024
MaMo 0.23 + 0.02 0.16 + 0.03 022 + 0.02 0.18 + 0.04
Ra/Mg 0.028 + 0.002 0.13 £ 0.01 0.021 =+ 0.002 0.033 £ 0.009

1.0005

1.0000

Normoalized flux

0.9995

0.9990 s s s s N N
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 2
i - : -
0001 F . . - ) e .
3 ggggoﬁmﬁpmmww»ﬁwﬁmmms%ﬂ
50908 : B S ke 3
& -00002 .
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Phase

Figure 19. The LC solution of KIC 6515722. The lower panel shows the
residuals while the upper panel does the observed points (black dots) and
the fit (red curve).
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Figure 20. The LC solution of KIC 9285587. The lower panel shows the
residuals while the upper panel does the observed points (black dots) and
the fit (red curve).

I also showed that replacing the wavelength integrated limb-
darkening coefficients with a passband-specific value has a ca.
16 per cent variation in the amplitude of the RM effect. This seems
to be negligible today but it might be taken when more precise data
of the ESPRESSO instrument or ELT will be analysed.

I also called the attention that RV drifts cause beaming effect
as well. Such a drift in K2-99 system may lead to a 10 ppmyr~!
variation in the mean brightness of the host star, which seems to be
observable with PLATO.

TLCM can be downloaded from the homepage mentioned in
Section 7.

The code is freely available and runs under IDL and free GDL,
under the Unix, Linux, and Windows platforms. It can be run from
command line or an X-window is also available, depending on the
user’s choice.
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APPENDIX A: RELIABILITY OF THE
DERIVED PARAMETERS

In this Appendix, I discuss the reliability of the derived stellar and
planetary parameters. This reliability does not depend on TLCM or
on any other modelling code, but mostly does on the input stellar
physics.

Planet-to-star radius ratio:

The reliability of the derived planet-to-star radius ratio in TLCM
and in other codes is mostly affected by limb-darkening and
photometric noise as well as stellar noise. This can be seen from the
basic expression of the transit depth:

d =kLp, (A1)

where d is the flux loss due to transit, k£ is the planet-to-star
radius ratio as before, and Ly, is the limb darkening function. After
logarithmic differentiation, I have
Ak o o 1ALp

K 2 a3,

(see Appendix B). Here A denotes the expected error bar and o is
the white noise level of the LC averaged for one transit duration.
(Red noise is not counted in this estimation.) The first two terms on
r.h.s can be decreased down to the negligible range by using better
quality photometric data and/or observing deeper transits. However,
the third factor depends on our knowledge of limb darkening. As
discussed in Csizmadia et al. (2013), three factors have an impact
on the last term in equation (A2):

(A2)

(1) uncertainties of input stellar parameters,
(ii) uncertainties of theoretical limb-darkening tables,
(iii) effect of stellar activity on limb darkening.

Considering the first point, the present-day usual uncertainties in
T and log g — on which the limb-darkening coefficients depend
most after the wavelength of the observation — do not allow us to
predict the limb-darkening coefficients better than £0.02 in absolute
value. For example, in the case of CoRot-1b, Barge et al. (2008) gave
5850 K for the host star effective surface temperature, while Torres
et al. (2012) reported 6298 K, which led to stellar masses of 0.96
solar masses reported by Barge et al. (2008) and 1.11 solar masses
by Torres et al. (2012). Such differences, of course, are reflected in
the planetary mass, radius, and density values. For the host star of
K2-60b, three different codes and teams presented three different
effective surface temperatures from the same spectral observations,
which differed by 275 K. This corresponds to a 3.30 difference if
I take the 85K error bar of one team or 2.4¢ if I use the other one
(Eigmiiller et al. 2017). Such examples tell us that one has to be
careful with stellar parameters and uncertainties. To judge better
the systematic shifts in these parameters, a comparison of works by
different teams is recommended. The aforementioned differences
in stellar parameters may cause a few percent uncertainty in the
values of the limb-darkening coefficients if one takes them from
theoretical tables and the errors are propagated to the tables, and
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also 1-3 per cent error in the planet-to-star radius ratio (cf. equation
1 of Csizmadia et al. 2013).

The reliability of the different theoretical limb-darkening tables
was discussed by comparing different tables to each other in
Csizmadia et al. (2013) and Neilson & Lester (2013). The former
study showed that limb-darkening uncertainties can cause errors of
up to 40 per cent in the derived planetary radii in certain temperature
ranges. It is not clear whether fixing or fitting these parameters is the
better approach (Csizmadia et al. 2013, Espinoza & Jorddn 2015).
Csizmadia et al. (2013) produced synthetic data with white noise
and modelled them with TLCM, while fitting the limb-darkening
coefficients. They found (their fig. 4) that one can measure well the
planet-to-star radius ratio with 1-2 per cent accuracy if the transit
depth/photometric noise ratio is greater than 3, and the number of
in-transit data points is at least 500.

Planetary radii after scaling with Ry:

The most important stellar parameter in transit LC analysis is the
stellar radius. The most precise stellar radii can be obtained from
analysis of double-lined eclipsing binaries and from interferometric
measurements, but the latter suffers from unknown distances.'*
Clausen et al. (2009, and references therein) called attention to
the fact that stars smaller than our Sun (down to K5V stars) are
10 percent smaller (at 1 percent measurement accuracy level) in
radius than those predicted by stellar models for the given mass.
Torres et al. (2010) collected those 190 stars in eclipsing systems
that have better radius values than 3 percent. They noticed that
several parameter ranges are not well sampled (especially above
10 and below 0.6 solar masses). Their comparison of observations
to theoretical stellar models and isochrones revealed that better
stellar models are needed for stars below 1 solar mass. Additionally,
for stars in the range of 1.1-1.5 solar masses, a more precise
description of overshooting and diffusion is needed for better
agreement between models and observations. Dressing et al. (2017)
found that cool stars (K3-M4 dwarfs) have a 39 percent larger
radius than those predicted from isochrones. Similar studies support
these findings (e.g. Eigmiiller et al. 2016; Vida et al. 2009, and
references therein). These findings were later further confirmed
by using the first data release of Gaia measurements: Jackson
et al. (2016) highlighted that main-sequence stars in open clusters
of age 5-140 Myr have radii bigger by 10 percent than those
predicted by standard evolutionary models (the difference is even
larger for pre-MS stars according to them). The reason can be
the neglected magnetic field; spots can block 30 percent of the
stellar light or a moderate combination of both. If one observes
planets around such stars, then all planetary radii are systematically
scaled up by 10 per cent, which means 30 per cent systematic error
in the density. Birkby et al. (2012) and, by interferometry, Mann
et al. (2015) pointed out that the discrepancy between models and
observations is even more pronounced for late M-dwarf stars where
large, 30-50 percent radius inflation can be observed compared
to standard models. Maybe, the magnetically driven strong stellar
activity puffs up these stars over the theoretically expected ones,
which do not include magnetic field calculations. Also, strong
stellar activity (spot) phenomena can contribute to the observed
discrepancies that falsify the effective temperature determination,
or convection parameters in the models are not well estimated.
In conclusion, there is real doubt on the derived stellar diameters
from isochrones. Usually, such systematic errors are not taken into
account in planetary radius analysis.

14 After the Gaia’s data releases, changes in the yield of interferometric
measurements are expected.
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The stellar parameters are functions like fiM, Z, t,), where f,
is the age of the star; binarity and mass-loss caused by stellar
wind can affect the form of function f. The inverse problem of
stellar parameter determination might be degenerate: the Vogt—
Russel theorem may be violated by real stars, i.e. stars can perhaps
occupy the same position on the HR-diagram with different masses
and chemical compositions (Lastennet & Valls-Gabaud 2002, and
references therein).

Therefore, the used empirical calibrations by the TLCM code
have their own significance. Such calibrations are given in Torres,
Andersen & Gimenez (2010) for log g, log Ty, and metallicity.
Enoch et al. (2010) and Southworth (2011) give the mass and the
radius of the host star as a function of the metallicity, effective
temperature, and the mean density of the star (which is measurable
from the transit duration). Note that in this case the effect of spots
is not additional; because of the empirical nature of the calibration
of these relationships, they are inherently included. TLCM uses the
calibration of Southworth (2011).

In the future accurate Gaia parallaxes and magnitudes should be
included into the parameter determination in order to increase the
final star and planet parameter precision.

In some other cases where we have very noisy LCs — down to
1:1 transit depth/photometric noise ratio'® — the transit duration
cannot be measured and therefore the a/R; ratio is unknown. Strong
stellar activity can increase the difficulties. For example, Barros
et al. (2014) found by MCMC analysis that without priors, at a low
activity level the a/Rg value of CoRoT-7b converges to ~6 while
at a high activity level it converges to ~2. When observed stellar
Teir and log g are used as priors in the fit, a/R; ~ 4 is obtained. In
such cases, therefore, strong constraints based on stellar parameters
should be used to determine the scaled semimajor axis.

There is hope that Gaia distances combined with the astero-
seismology of PLATO will finally resolve these issues and give
us reliable, systematics-free, 1-2 per cent reliable stellar radii and
masses (Rauer et al. 2014). It is worth mentioning that the relative
parameters, like a/Rg and planet-to-star radius ratio, are mostly
independent of this problem (at a reasonable noise level), and
they can be rescaled any time when more accurate stellar radii
are available; therefore, they do not have an impact on the relative
parameter determination and LC fits of transit LC codes.

With Gaia DR2, one can get very accurate and precise stellar
radii — depending on our knowledge of interstellar absorption and
the stellar effective temperature. a/R then can be fixed or prioritized
in two different ways:

(1) The asteroseismologic mean stellar density provides the mass,
and Kepler’s third law can be used to calculate a and then one can
scale it to a/Ry (ct. equation 59);

(ii) The mean stellar density can be obtained from the transit
parameters, and with or without a stellar isochrone model this can
be used to get the stellar mass, and then as before, Kepler’s third
law can be used to calculate a and then one can scale it to a/R;. The
second approach was used in Csizmadia et al. (2015).

APPENDIX B: RADIUS RATIO PRECISION,
TRANSIT DEPTH, AND LIMB DARKENING

Here I derive equation (A2), which tells the relationship between
transit depth, limb darkening, and radius ratio precision.

I5Tn this section, photometric noise is the standard deviation of the constant
stellar light under white noise calculated for the same time as the transit
length.
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Let d denote the transit depth; o is the photometric white noise
average for one transit duration, Fy is the out-of-transit flux, and
Fiy 1s the in-transit flux (stellar variability assumed to be removed).

The transit depth is clearly

d = Foo — F (B

and it is related to the radius ratio k and limb-darkening function L
as

d = Foou — Fiy = k’Lp - Foqy. (B2)

Lp depends on the limb-darkening coefficients and the actual sky-
projected distance of the two objects. Differentiation gives

A(d) = 2k A(k) Ly Foot + k> A(Lp) Foor + k* Ly A(Fooy). (B3)
In case of Poisson noise, one can write that

0 = A(Foo)/ Foor (B4)
and therefore

A(d) = A(Foo — Fin) & 2A(Foou) = 20 Foor. (BS)
Putting this back and rearranging equation (B3), I arrived to
Ak) _o., 0 N A(Lp)

k 2 d ' Lp
Q.E.D.

(B6)

APPENDIX C: DEFINITION OF CONJUNCTION
AND PERIOD VARIATION CAUSED BY
PROPER MOTION

The conjunction occurs when the planet crosses the XZ plane (cf.
Fig. 1). When X > 0, one speaks about occultation while one has a
transit when X < 0. The X-axis connects the star and the observer, so
when the star and the observer do not change their relative position
in space, then the transit period is equal to the anomalistic period
(the latter one appears in Kepler’s third law) and it can be considered
as the time elapsed from conjunction to conjunction.

When the star exhibits observable proper motion, then the
conjunction line slowly moves in space, which leads to an apparent
period increase. This is because the planet must do more than one
revolution to cross the conjunction line, so the transit period is
longer than the anomalistic period.

One can express this increase as

NP,p
3600 )’

P =P, (l + (CD)
where P, and P, are the transit and anomalistic periods in days,
respectively, N is the number of revolutions, and p is the proper
motion in degd~!.

The corresponding O — C value can be obtained via

N(N —1)

O — Ceontribution = TPEP' (C2)
TRAPPIST-1 has an apsidal motion of the order of 1000 mas yr~'.
If it had a 1 d-orbital period planet, then we would observe 12 s
O — C value after 1 yr. However, most of the transit planet host
stars have a proper motion that is two orders of magnitude or more
smaller, so this effect should be taken into account very rarely.

The RV of the exoplanet causes also a period shift via the Doppler
effect, which is characterized as

vy
Paitiea = Pa | 1 + -~ ) (C3)



However, this causes no period variations until V,, is constant in
time. However, if there is, for instance, a close companion to the
host star, then a correction might sometimes be appropriate.

APPENDIX D: FURTHER NOTES ON
EQUATION (44)

Let us assume that the RV points’ uncertainties follow a normal
distribution. Then the chance that an RV point has a certain value
is

_ (RV(;)=RVinodel.i 2

1
2} . (D1)

Li=—¢

R, 27'[(71'
The probability of the RV fit is the product of each of the points:

1 1 _ s YRy (RVU)=RVinoger.i ?
_mMevy . _ Nrv i=1 207
L=TLNL, = —(2ﬂ)NRV/2 T, p e . (D2)
What T have in the exponent is actually the gz, value of the RV
curve. The probability of the joint RV+LC fit is the product of the
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probabilities of the two data sets:

Lioiny = Lic X Lry (D3)
or equivalently,

— logLioine = —logLyic — logLyy. (D4)
Substituting (D2) into (D4), one gets

_ L l 2 2
In Ligi = —In Lic + 5 (X&v. + Xava

+ =M Inogy ; + Nev In27). (D5)

With Q = —logL;in this is equivalent to equation (44). It inherently
contains the assumptions that the RV curve has normally distributed
erTors.

This paper has been typeset from a TX/IXTEX file prepared by the author.
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